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1. SUMMARY

This report describes an investigation that was conducted to select and develop an
improved analytical method for predicting the stability and control characteristics of elastic
[ ]

- airplanes.

The investigation included consideration of the free-flight conditions of large airplanes
in their “clean” configuration. Landing, takeoff, ground effects, stability augmentation,
and control surface movements weie not considered, nor were prediction of air-
plane performance, flutter, or structural loads. Thes study was confined to a fligl.-
envelope extending from low subsonic speeds to Mach 5 and from sea level to 30 000 meters
(93 360 ft) altitude. Within this envelope, rectilinear and curvilinear reference flight paths

- were taken and analyses made of arbitrary, large, and small perturbations of airplane motion
about the reference flight paths. Airplane structural motions of dynamic-elastic and
quasi-static-elastic characters were included, and their effects on stability determined.

The approach taken in the investigation was to develop in order:

o cquations of motion

o stability criteria ] _

e stability derivative prediction methods

e stability characteristics prediction methods

A major result obtained in the investigation has been the unification and development of
aerodynamic, structural, and dynamic technologies into an overall plan for calculating
elastic airplane stability characteristics. The plan involves a computing program system

- - arrangement as outlined below.

Section Elements

Input:
Geometry
Reference Flight Airplane
Condition Definition
Flexibility - Section
Mass Distribution

Geometry Definition (GD)

Aerodynamic Influence
Coefficients (AlIC)

Structural Influence
Coefficients {SIC)

Normal Modes (NM)

Section Elements

input: Airplane
P ' Stability
rical Data
Empirical Evaluation

Section

Stability Derivatives &
Static Stability (SD&SS)

Characteristic Equation
Rooting (CER)

Time Histories (TH)




“There are two essential features to this plan;

1. The system elements anG the total system are well suited to computer programming.

2. Provision is made for introducing empirical dath (experimental measurements,
handbook results, etc.) into the system.

Other results and conclusions concerning the avalysis methods and their application to

large, flexible airplanes of the SST and 707-320B type are listed below.

1. The lumped parameter concept is the most practical way to represent an airplane for
analysis. This involves paneling the airplane so that the aerodynamic and structural
relationships among panels can be expressed in terms of influence coefficients. A
geometry definition program is desirable to mechanize and help guide the paneling.

2. Lifting surface theory gives good resulis and is the most suitable method for
determining the aerodynamic influence coefficients.

3. For most airplane configurations, equivalznt beam structural models are adequate
for determining structural influence coefficients. For very low aspect ratio wings or
for increased accuracy, however, influence coefficients from large, sophisticated,
finite element structural programs should be used.

4. The stability criteria that apply to rigid airplanes apply directly tc elastic airplanes.

5 . Stability characteristics can be influenced strongly by inaccuracies in estimating che
rigid stability derivatives. These effects on design decisions are of the same order of
importance a- quasi-static-elastic and dynamic-elastic effects.

6. The effect of airplane loading conditions (mass distribution) on an elastic airplane’s
stability characteristics can be relatively large, somefimes reversing the sign of the
parameters that represent flexibility effects.

7. The evaluations of control effectiveness and control surface angles required to trim
are influenced strongly by flexibility; however, since viscous and nonlincar
aerodynamic effects are also important in those evaluations, the applicability of
lifting surface theory based on potential flow as a prediction technique is limited.

8. Airplane stability characteristics are, in general, moderately affected by flexibility.
The quasi-static-elastic formulation is usually adequate for most prediction tasks,
dynamic effects being generally modest. However, some dynamic check casi ,
should be run, since there is no assurance that dynamic effects will be small for any
given configuration. .

It is recommended that further development of prediction methods follow the plan®
mentioned above. Lifting surface theory and beam analysis should be used to determine
aerodynamic and structural influence coefficients and to calculate stability derivatives and
stability characteristics. For dynamic stability investigations, if the center-of-gravity
disturbance is characterized by the small perturbation equations of motion, the character-
istic equation rooting technique may be used. The stability of large perturbations is best
evaluated by time history calculations.

*Mechanization of this plan is currently under way under the direction of personnel of the
Non-Steady Phenomena Branch, NASA-Amzs,



2. INTRODUCTION

The stability of an airplane is its tendency to persist in a particular reference motion
(for example, steady, level flight) when it has been disturbed from that motion. P.imary
factors affecting stability are the changes in the aerodynamic forces and moments acting on
the airplane that occur with changes in the airplane’s motion and orientation. They are
expressed as siability derivatives evaluated at the reference motion condition, such as the
change in airplane lift coefficient with change in angle of attack, 3C[ /d¢y|,.f = CL (-

In the past, the effects of structural flexi ‘ity on airplane stability were accounted for
by modifying the stability derivatives. For example, a change in airplane lift due to a change
in angle of attack might produce twisting of the wing or bending of the fuselage, resulting in
a different lift change for a particular angle-of-attack change than would occur had the
airplane been rigid. The rigid airplane stability derivatives were then corrected to include
these quasi-static-elastic effects.

The effects of structural dynamics have generally been a consideration only in flutter
predictions. The center of gravity of the airplane was (and is) considered t.» be in a state of
steady, level flight while the structure is disturbed. For example, neutral flutter stability is a
constant-amplitude, oscillatory structural motion resulting from a disturbance; however, this
motion is regarded as having no effect on the steady, level motion of the center of gravity of
the airplane. This is a satisfactory representation of the motion provided the frequency of
the structural motion is well separated from the natural frequencies of the overall motion of
the airplane, e.g., its short period longitudinal natural frequency. In this case the two
motions are not sufficiently coupled for an exchange of energy between them.

Certain aerodynamic and structural approximations have also been used. Aerodynamic
surfaces ~wings and tails—may have sufficiently large aspect ratios that lifting line theory
may be used to predict aerodynamic loads and the structure may be treated essentially as an
assemblage of beams. These and other approximations were satisfactory and led to relatively
simple methods for predicting the influence of structural flexibility on airplane stability.

However, the advent of large airplanes operating in the transonic and supersonic flight
regimes nas led to configurations for which some of the acceptable approximations of the
past are of questionable validity or are obviously invalid. The frequencies of the structural
motion have been sufficiently reduced by the increase in both airplane flexibility and cruise
dynamic pressure that coupling with overall motion of the airplane is attendant. The use of
low aspect ratio aerodynamic surfaces invalidates the lifting line aerodynamic approxima-
tion and reduces the applicability of equivalent beam structural models, Different methods
of analysis must be introduced.



i Bisplinghoff and Ashley (ref. 1, chapter 9) have laid the ground work for new, less
restrictive inethods by presenting equations of motion that have the required degree of
generality. Milne (ref. 2) also presents the development of more gencral equations of motion
that integrate conventional stability and aeroelastic methods. Milne’s rather extensive work
also includes the application of the equations to the problem of slender airplane trim state
and longitudinal stability. Most major airplane companies are also involved in developing
new, less restrictive methods. However, results of these studies are usually not available in
the open literature.

With this background in mind, an investigation was conducted for the purpose of
developing an improved method for predicting the stability and control characteristics of an
elastic airplane, Objectives of the study were to:

1. Develoy equations of motion that have sufficient generality to handle large, flexible

airplane stability and control problems, including dynamic-elastic effects.

2. List and evaluate assumptions and restrictions introduced and determine how they

may influence the prediction of airplane stability and control characteristics.

3. Develop stability crite 2 applicable to flexible airplanes.

4. Develop improved methods for predicting elastic airplane stability derivatives using

" current and/or improved aerodynumic and structural techniques.

5. Develop an frﬁprové_d_épproacﬁ for pfedibjciilg_élasficﬁblaﬁé stability characteristics

using the results of 1 through 4 above.

6. Document the results of the study in a precise, understandable form.

The work was accomplished under the technical direction of the Non-Steady
Phenomena Branch, Ames Researcin Center, Moffett Field, California. Members of the
Aerodynamics and Structures Staff of the Commercial Airplane Division of The Boeing
Company at Renton, Washington conducted the investigation as a joint effort. Frequent
coordination meetings and reviews with Ames representatives were held during the course of
the contract.

The scope of the investigation included consideration of large, flexible a.: g
operating in the flight envelope of fig. 1. Only “clean” configurations were studied; lanuing,
takeoff, ground effects, stability augmentation, and control surface movements were not
considered. Rectilinear and curvilinear reference flight paths were assumed, and arbitrary,
large, and smali airplane motion perturbations about the reference flight paths investigated.
Structural motions of dynamic-elastic, quasi-static-elastic, and rigid nature were included in
the study.

Only stability and control characteristics were included in the investigation; nc
consideration was given to the prediction of airplane performance, flutter, or structural
loads. Both static and dynamic stability characteristics were studied. Stability citeria were
also examined, but no handling-qualities work was included.
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The investigation was fur er restricted to the consideration and development of
analytical methods; experimental methods were of interest only to the extent that they
served as a standard for comparing and evaluating the analf/tical approaches. Although the
number of theoretical methods considered was large for the initial part of the investigation,
it was rapidly narrowed for the major task of comparing and evaluating the several most
promising approaches.

The approach taken in the investigation was to develop in order:
e equations of motion '

@® stability criteria

e stability derivative prediction methods

® stability characteristics prediction methods

Three mathematical models of an elastic airplane were considered; rigid (generally
frozen in the reference shape), equivalent elastic*, and dynamic elastic.

The rigid model admits no structural deflections from the shape in the reference
motion. it serves as a base and provides a means for evaluating theoretical methods by
comparing predictions with data obtained from essentially rigid wind tunnel models. The
rigid model was sufficiently accurate to describe most aircraft prior to the introduction of
large (weights of over 100 000 Ib (45 359 kg)), swept-wing jet aircraft flying at dynamic
pressures above 400 psf (19 152 N/m2). -

The equivalent elastic model assumes that all structural deflections are of a
quasi-static-elastic nature. Air and inertia loads are considered to be in phase with the
deflections. No structural dynamic effects are included. This model has also been referred to
as static-elastic or quasi-static-elastic in the literature. For this model, flight test and
flexible-model wind tunnel data are used as the basis for validation. The equivalent elastic
formulation is satisfactory wherever there is a reasonable frequency spread between
structural and control modes.

The dynamic-elastic model is the most complex of the three. It takes into account
dynamic motions of the structure as well as in-phase deflections. Usually this case is handled
by considering 10 to 80 structural vibration modes. A variation of this approach that lends
itself to computer calculation is the residual-flexibility formulation, which considers the
coriect phasing of the lower frequency vibrational modes but assumes that higher frequency
modes are in phase with the loads. This approximation gives to the residual-flexibility
method advantages for compt ter mechanization that may result in more accurate answers
than would be obtained wih the straightforward inclusion of modes with their

*The terms quasi-static-elastic, . ati - .2 equivalent elastic are used interchangeably
in this report.



mathematically correct phasing. The dynamic-elastic formulation is usually required for
cases where the structural frequencies are near maneuver and control frequencies
(approximately within a 2:1 ratio).

The equations of motion were developed first for the rigid airplane, treating first the
general equations of motion, then airplane motion perturbations about the reference flight
path. Next, the flexible airplane equations of .motion were developed, using the lumped
parameter concept in describing structural flexibility and structural equilibrium. Perturba-
tion motions were united with the structural motions for both equivalent elastic and
dynamic-elastic cases. Both residual-flexibility and completely elastic approaches were taken
in developing the equations to describe the dynamic-elastic airplane case. Assumptions and
restrictions introduced into the developments were carefully evaluated as to their effects on
stability and control applications of the equations.

The approach taken in establishing stability criteria was essentially one of examining
rigid airplane criteria to determine whether they do or do not apply to flexible airplanes.
This part of the study was divided into consideration of static and dynamic stability cases.
The usual mathematical approaches of characteristic equation rooting and time history
traces to assess dynamic stability were taken. Some consideration was given to energy decay
methods for possible future application.

Stability derivative prediction methods for rigid airplanes can involve the use of a
variety of aerodynamic theories and methods. The approach taken here was to compare and
evaluate against experimental data those methods based on lifting line theory; lifting surface
theory; and handbook compilations of theoretical, empirical, and test data. For the elastic
airplane, the structural methods considered were finite element theory and equivaleni beam
analysis. Structural methods were compared for the purpose of finding the one most
suitable for preliminary design application.

Methods for the more extensive task of predicting the stability characteristics require a
unification of the previously mentioned areas. Static stability characteristics were
determined by using the stability derivatives. The dynamic stability calculation methods
investigated consisted of approximate empirical handbook formulas, roots of the small
perturbation characteristic equations, and time histories from solution of the large
perturbation equations of motion.

The approach taken for this part of the study was to investigate the regions of
applicability of the available methods and to assess the relative importance of static-elastic
and dynamic-elastic effects on airplane stability. Areas in the flight envelope of fig. I where
specific calculations and comparisons were made to validate the methods are shown by cross
hatching. Application of the methods to other areas within the envelope was justified by an
evaluation of the assumptions and restrictions incorporated into the governing equations.



The report consists of four separately bound volumes: a summary report and three
-appendixes. These also serve as a handbook which describes and discusses the pertinent
aeroelastic methods.

The summary report presents the results and conclusions of the study with discussions
as required for the reader to gain an understanding of the subject. It should be useful for
managers, those new to the field or experiencéd only in related fields, and any others
desiring an overview of the subject. '

The appendixes contain those results of interest primarily to the specialist, including
the detailed steps and discussion of the various derivations and developments as well as the
‘variations in approaches and applications of the methods. Appendix A treats the
development of the equations of motion and stability criteria. Appendix B develops and
evaluates methods for determining longitudinal and lateral-directional stability derivatives.
Appendix C, using the results of the previous work, discusses and evaluates the pertinent
factors important to the prediction of airplane stability and response characteristics.

Matrix notation and methods have been used in developing and presenting many of the
equations in the summary report and succeeding parts of the study. The reader not familiar
with the notation is advised to spend the short time necessary to learn the basic ideas and
symbols of matrix methods. For the specialist, a thorough understanding is essential.
Reference 3, or one of the many other available books on matrix methods, is recommended.

It is also assumed that the reader has some background in the field of stability and
control. If this is not the case, or if review is desired, Etkin’s book (ref. 4) is suggested for
study.



3. SYMBOLS

This list includes the symbols found in the Summary and appendixes. In different
technologies some of the symbols have different meanings. For example, € means downwash
angle to an aerodynamicist, but strain to a structural engineer. In these cases the several

det aitions have be:n lis.ed after the symbol.

General

AR
(A}

[6A]

a

Aspect ratic nondimensional

Sieady aerodynamic influence coefficients mairix, meterszlradian

Unsteady aerodynamic influence coefficients matrix, meter?

radian

-seconds;
Aerodynamic matrices, newtons, newton-meters

Root of characteristic equation, second™! ; lift curve slope, radian”!

Speed of sound, meiers/second

Vertical tail elastic to rigid lift ratio, nondimensional
Acceleration, mefiers/second2

Wingspan, meters

Cycles to damv to half amplitude, nondimensionai
Cycles to double amplitude, nondimensional

Drag coefficient, D /qS, nondimensional

Induced drag coefficient, D; l4S, nondimensional
Lift coefficient, L [qS, nondimensional

Rolling moment coefficient, My [ qSb, nondimensional
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Cy. <y
{(cl

(Co)

(Cl

[Tyl

‘R

ol

ref

(D}

ol

{d;}

{a,}

Pitching moment coefficient, My /§S¢€, nondimensional
Normal pressure force coefficient, N /§S, nondimensional
Yawing moment coefficient, MZ/QSb, nondimensional
Pressure coefficient, (P - P, )/q_, nondimensional

Thrust coffficient, T / qS, nondimensional

Side force coefficient, Fy 1qS, nondimensional

Fiexibility matrix with reference point fixed, meters/newton

Flexibility matrix with reference point fixed and with reference
point rows and columns removed, meters/newton

Flexibiiity matrix with reference point free, meters/newion
Residual flexibility matrix, meters/newton

Wing chord, meters

Root chord, meters

Mean aerodynamic chord, meters

€ for the 707 and cp for the SST, meters

Drag, newtons

Induced drag, newtons

Transformation matrix from fluid to stability axis system,
nondimensional

Elastic displacement, meters

Column matrix of elastic displacement components at the ith

element, meters

Matrix of elastic displacement perturbation, meters

Total airplane perturbation energy, newton-meters; Young’s modulus,

newtons/meterz; induced drag efficiency factor, nondimensional;
energy, newton-meters



2l

{r}
{Fp}

[F )

{F,}
{Fr}

[Fg]

™

{r}
{fal}
{fr}

GW

Qb

Internal energy density, newton-meters4/kilogram
Energy decay parameter, nondimensional

Force, newtons; surface stress vector, newtons/meter2
Total force matrix, newtons

Aerodynamic force matrix, newtons

Flexibility matrix relating changes in panel centroid deflections to
unit loads, meters/newton

Generalized forces at ith

element, arbitrary dimensions
Thrust force matrix, newtons
Flexibility matrix relating panel slopes to unit loads, radians/newton

Aerodynamic influence coefficients (subsonic), newtons/radian

Perturbation force, newtons; perturbation surface stress vector,
newtons/meter2

Perturbation force matrix, newtons

Aerodynamic perturbation force matrix, newtons

Thrust perturbation force matrix, newtons

Shear modulus, 1r1ewtons/me‘ter2

Gross weight, newtons

Structural influence functions in diadic form with reference point
free, meters3/newton

‘Aerodynamic influence coefficients (supersonic), newtons/radian
Acceleration due to gravity, meters/second2
Unit base vector, nondimensional

Altitude, meters; specific enthalpy, ﬁewton-meters/kilogram; center-
of-gravity position, nondimensional

11
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Lyxs lxy’ Iz

lyys lyz: 12

(i, f1d

po>
y—->

i I
ke
=h=>

Cant

Ké(W)
Kw(B)
(K]

Maneuver point position, nondimensional

Neutral point position, nondimensional

Static margin, nondimensional

Velocity of panel normal to the streamwise direction, meters/second

Moments and products of inertia, kilogram-meters2

Identity matrix, nondimensional
Horizontal tail deflection, degrees

Unit base vectors, nondimensional

Torsional constant, meters4/radian

Angular deflection at the exposed horizontal tail due to a unit load
at the tail, radians/newton

Structural stiffness coefficient, newtons/meter

Ratio of aircraft nose lift to aircraft wing lift, nondimensional
Effective change in vertical tail angle of sideslip due to a unit change
in rolling acceleration measured at the exposed vertical tail, degrees/
radian/second2

Effective change in vertical tail angie of sideslip due to a unit change
in yawing acceleration measured at the exposed vertical tail, degrees/
radian/second

Effective change in vertical tail angle of sideslip due to a unit change
in side acceleration measured at the exposed vertical tail, degrees/
meter/second2

Effect of lift carryover on the body due to the wing, nondimensional

Effect of lift carryover on the wing due to the body, nondimensional

Stifiness matrix with respect to fixed reference point, newtons/meter

beovr cemada



(K}
(K]

(K]

(k1,[KkJ

=4

(M]

[m]

ml,mz, m3

(m]
[in]

Zi

Element stiffness matrix, newtons/meter
Stiffness matrix with respect to free reference point, newtons/meter

Generalized stiffness matrix with free reference point, newtons/
meter

Thermal conductivity, newton-n;eters/second~meter~degrees Celsius;
elastic constant, newtons/meter<; Strouhal number, nondimensional

Corrector matrix for influence coefficients, nondimensional
Lift, newtons

Moment arm, meters; characteristic length, meters; pressure difference
across surface, newtons/meter2

Wing c.¢/4 to horizontal tail C,of/ 4, meters

Wing c_.¢/4 to vertical tail Crof/4, meters

Direction cosines, nondimensional

Mach number, nondimensionai; mass of the airplane,‘kilograms
Moment, meter-newtons

Inertial matrix, kilograms, kilogram-meters2
Generalized mass matrix, kilograms
Direction cosines, nondimensional
Perturbation moment, meter-newtons

Mass matrix, kilograms

Diagonal mass matrix, kilograms

Yawing moment, meter-new{ons

Normal force, newtons

Load factor, nondimensional; number of elastically connected mass
elements nsed to represent the airplane, nondimensional

13



nl, n2, n3

=)

[nJ
P

P,Q,R

{pr}

0, q, I

{Q}

Direction cosines of t.he normal surface, nondimensional

Unit vector normal to the surface, nondimensional

Diagonal matrix of panel unit normal vectors, nondimensional
Period, seconds

Coinponents of the angular velocity & in the body axis system, radians/
second

Total pressure, newtons/meter2
Aerodynan‘lic panel pressure forces, newtons
Static pressure, newtons/meter<; roll rate, radians/second

-t

Perturbation components of angular velocity Wp in the body axis
system, radians/second

Generalized force, arbitrary dimensions™

Matrix of generalized aerodynamic and thrust forces, arbitrary
dimensions*

Pitch rate, radians/second; rate of internal heat energy addition, newton-
meters/second

Generalized coordinates, arbitrary dimensions *
Dynamic pressure, newtons/meter2
Pitch rate, qc,op/2V, l,nendimensional

Matrix of generalized coordinates, arbitrary dimensions*

Matrix of generalized coordinates of elastic free vibration, arbitrary
dimensions*

Cantiiever eignvectors, nondimensional

*The units of a generalized force times the generalized coordinates must be newton-meters.

14



Re

-} -t ) 1) -> .1 =i

-:J

O-i\‘

wd

{0}

[sd

Universal gas constant, newton-meters/kilogram-degrees Kelvin;

magnitude of position vector, meters; region of XY, plane not covered

by the airplane or wake, nondimensional
Reynolds number, nondimensional

Position vector at an initial instant of time, meters; body force per
unit volume, newtons/meter3

Reference distance, meters; magnitude of the position vector, meters

Yaw rate component, rb/ 2Vcl , nondimensional

Position vector relative to the body axis system, meters; position
vector relative to the fluid axis system, meters

Position vector of the center of gravity relative to the fluid axis
system, meters

Position vector relative to the stability axis system, meters
Position vector relative to inertial space, meters

Position vector of the center of gravity relative to the inertial space,
meters

Position vector in the undeformed airplane relative to the body axis
system, meters

Matrix of airplane position and orientation perturbations, meters,
radians

2

Reference area, meters<; airplane’s projection on the XY plane,

nondimensional

Diagonal matrix of panel areas, me:te’rs2
Complex frequency function, 1/seconds

Kinetic energy, newton-meters; thrust, newtons; time, seconds

Time to damp to % amplitude, seconds

Time to double the amplitude, seconds

15
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1T,

-1/T,

t*

A
u

{u}, {up}

w

{x}

Rolling convergence .modc root, 1/seconds

Si)iral mode root, 1/seconds

Time, seconds; airfoil thickness, meters

Nondimensionalizing time factor, seconds

Potential energy, newton-meters

Components of velocity VC in the body axis system, meters/second

Perturbation components of the velocity in the body axis system,
meters/second

( Generalized coordinates, nondin ensional
Forward velocity component, u/V, I’ nondimensional
Generalized eiastic displacements, meters
Lyapunov function, nondimensional; volume, meters3
Equivalent airspeed, meters/second
Velocity vector of the airplane center of gravity, meters/second

Velocity vector, meters/second

Perturbat'ion velocity vector of the airplane center of gravity
meters/second

- Matrix of airplane liuear and rotational rate perturbations, meters/
second, radians/second

Matrix of airplane Jinear and rotational acceleration perturbations,
meters/secondz, radians/second2

Weight, newtons; airplane’s wake projection on the XY plane,
nondimensional

Matrix of panel centroid distances to the reference point, meters

{ ]

Body-fixed-axis system (app. A); fluid axis system (app. B)

)
Poviino e [ | 1! Fir oo .



XB, YB, Zy; Body-fixed-axis system

XB: YB» 2B

Xos Yo’ Z, Axis system fixed to a material point

XY’z Earth-fixed-axis syster

xyz

Y Side force, newtons

tayd Matrix of spanwise panel widths, meters

Zp Vertical displacement of structural reierence point, meters
{z} Matrix of vertical displacements of each panel from equili! t:.im,

meiers

(1 Square matrix

{} Column matrix

i) Row matrix

tJd Diagonal matrix

Ty Transposed matrix

[ ]'l Ma'trix inverse

It ]|i Determinant of a matrix

[0) All zero elements
{1} Column matrix of ones

tn “Jump”’ in enclosed quantity
Greck Symbols

o Angle of attack, radians

aR Angular rotation of structural reference point, radians
Qpef Angle between X body axis and Vcl , radians

{a} Mairix of panel slopes, radians
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{6}

{os}

)

-3

s

9ix,iy,Piz

©

Angle of sideslip, radians
(M2 - 1), nondimensional
Circulation, meterszlsecond

Structural influence functions with reference point fixed in diadic
form, meters3/newton

Flight path angle, radians: ratic of specific heats for air,
nondimensiona}l

Finnce change in some parameter, nondimensional
Control surface defiection, radians; arbitrarily small number, non-
dimensional; Dirac’s function, nondimensional; thickness ratio,

nondimensional

Matrix of displacements relative fo a space-fixed inertial system,
meters

Marrix of flexibie displacements relative to the structural axis system,
meters

Downwash angle, radians; arbitrarily small number, nondimensional;
strain, meters/meter

Change in downwash angle at the stabilizer per unit change in wing
angle of attack, 9¢ /9, radians/radian

Damping ratio, nondimensional; nondimensioaalized coordinate,
nondimensional; dummy variable, nondimensional

Efficiency factor, nondimensional; coordinate, nondimensionai;
dummy variable, nondimensional

Euler angle, radians
Perturbed Euler angle, radians
Streamwise rotation of panel, radians

Node rotations, radians

Rate of change of Euler angle, radians/second



Oei Rotational rate of paneled airplane about axis of rotation, radians/
second
5} Rigid-body rotation about center of gravity, radians
(8] Angle mode matrix, radians/meter
A Eigenvalue, nondimensionai; taper ratio, nondimensional; bulk
modulus, newtons/meterz; Lame’s constant, newtons/meterz; sweep
angle, degrees
7\} Roots of characteristic equation, 1/seconds
B Reduced mass parameter, nondimensional; Lame’s constant, newtons/
mcterz; extent of influence region, nondimensional
{1} Cantilever mode shape matrix, nondimensional
(1] Matrix of all cantilever modes, nondimensional
v Poisson’s ratio, nondimensional
&8 Coordinates, nondimensional; dummy variables, nondimensional
T Constant, 3.14159. . ., nondimensional
p Density, kilograms/meter3
o Normal stress, newtons/meterz; density ratio, nondimensional; real
root of characteristic equation, 1/seconds
%R Rotation of structural reference axis system, radians
Op Rectilinear translation of structural reference axis system, meters
T Coefficient of viscosity, kilograms/meter-second; shear stress,
uewtons/meterz; time, nondimensional
¢ Total velocity potential, meterszlsecond; Euler angle, radians

(®n] Normalized natural free vibration modes of the airplane, nondimensional
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Subscripts

A

ac

Perturbation velocity potential, meters; perturbe¢ Euler angle radians
Rate ot"change of Euler angle, radians/second
Free-vibration mode shape matrix, nondimensional

Rigid-body mode shape matrix, nondimensional
Stress diadic, ncwtons/meter2

Normal mode of generatized coordinate, nondimensional
Velocity potential, nondimensional

Arbitrary positive function of time, arbitrary dimension
Euler angle, radians

Perturbed Luler angle, radians

Rate of change of Euler angle, radians/second

Inertia diadic

Phase angle, radians

Frequency, radians/second; imaginary part of a pair of complex roots,
1/seconds

Undamped natural frequency, radians/second

Perturbed angular velocity, radians/second

Aerodynamic; airplane; aileron
Aerodynamic
Aerodynamic center

Body reference axis system
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cp

221}

Eff

EqEl

exp

HB

h, ht

LE.,LE

Is

sp

Center of gravity

Center of pressure

Dutch roll mode

Equivalent elastic (Formulation II); elevator
Equivalent elastic (Formulation I)
Effective

Equivalent elastic

Experimental

Flutter

Handbook methods

Horizontal taii

Inertia relief

Lower surface

Leading edge

Lifting surface theory method
Phugoid mode

Rigid; rudder

Rolling convergence root mode
Spiral root

Short period

Stability axis system; spiral mode

21
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sl

u

v, vert, V.T.

W

WB

WBT

WT

-

Sca level

Tip; total

Upper surface

Vertical tail

Wing

Wing-body

Wing-body-tzil

Wind tunnel

At a=0g =i, = 0°; initial state

Steady state motion variables; trimmed condition

Undisturbed condition



4. ASSUMPTIONS

Assumptions used in developing the equations and methods are listed here for
reference. Where appropriate in the summary report, pertinent assumptions used in
obtaining a result or equation are given. However, discussions of the assumptions as they
come into the developments are given in the appendixes. Further descriptions and
Jjustifications are included in those discussicns.
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General Assumptions
Airplane mass and nass distribution are constant with time
No thermoelastic effects considered

No electromagnetic effects considered

Q

Symmetric airplane

Q
N

Variation of air density with altitude is negligible
No gust effects considered
Gravitational forces on the field are negiigible

Small perturbation theory

Q
)

PO®RERAI®O®®G

Large perturbation theory

Origin of coordinate system is at the center of mass

1

Arbitrary perturbations

<

Aerodynamic Assumptions

—

Potential flow theory

Thin body

Siender body

High aspect ratio

Prandtl boundary layer approximation

Perfect gas, thermally nonconducting and chemically nonreacting
Isentropi(;'flow

Steady flow

EOOOHOE®G



Unsteady flow

Inviscid flow

9160,

Quasi-steady flow

>
—
()

Aerodynamic influence coefficients for nonzero sideslip
Continuum flow
No finite shock waves

Velocity field is irrotational

1616}

Structural Assumptions

Hooke’s law applies

Only small strain and displacement gradients are considered
Structural damping is negligible

Structurai perturbations can be represented by normal modes

Comyplctely elastic math modet of elastic airplane

7]
=y

OO WELEEEEO®®

Residual elastic math model of elastic airplane
Equivalent elastic math model of elastic airplane
Rigid math model of elastic airplane

Airplane displacement vector field is such that the center of gravity
does not displace or rotate

X component of elastic deflection is negligible

Y component of elastic deflection i. .1egligible

! L bl by

The structure can be adequately represented with beams

Tibeas a

Inertia of each finite mass element about its center of gravity is
negligible t .
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Dynamic Assumptions

=)

POOOOOERRO®ERE®G®V

w

Free flight only

No spinning rotors

Steady-state curvilinear flight
Steady-state rotation is small

Zero-lag thrust derivatives

CL5 is negligible

CYi’[’ CYEI’ Cyp ;;(I, and Cn§l are negligible
C.Dq is negligible

Steady-state rectilinear motion
Stick-fixed-and-unaugmented airplane
Thrust perturbation forces are negligible
Steady state, wings level, and zero sideslip
Level flight'(steac"iy state)

Linear aerodynamic stability derivatives

' Two-degree-of-freedom longitudinal motion



5. EQUATIONS OF MOTION

»
»

The equations of motion for rigid airplanes and flexible airplanes are presented in this
section in the forms deemed most suitable for assessing airplane stability characteristics. The
stability of an airplane is its tendency to persist in a steady reference motion when it has
been disturbed from that reference motion. The steady reference motion must be defined
and the perturbation motion analyzed. Thus, four sets of equations of motion are presented.
Two govern the reference and perturbation motions for rigid airplanes and two govern the
reference and perturbation motions for flexible airplanes.

The perturbation equations of motion are presented for three different order-of-
magnitude approximations of the size of the perturbation motion variables. These are
termed arbitrary, large, and small perturbation equations of motion. The small perturbation
equations are those which have had greatest application’in the analysis of the stability of a
steady reference motion. Arbitrary and large perturbation equations may be used in
investigations involving large disturbances that upset the airplane and in the study of
maneuvering flight. However, since neither upset nor maneuvering flight are within the
scope of this study, the small perturbation equations of motion are given primary emphasis.

The equations of motion presented for rigid airplanes are those which are familiar to
engineers working airplane stability and control problems. They are essentially those
developed by Etkin (ref. 4); however, here they are expressed in a body-fixed-axis system
that is convenient for the application of aerodynamic influence coefficient methods. This is
in contrast with the usual formulat.on in the stability axis system (ref. 4). In addition, the
formulation provides for very general steady-reference motions including curvilinear flight.

There is considerable diversity in the manner in which the equations of motion for
flexible airplanes have been formulated. Modifications have been made in the past to
accoramodate new methods for predicting the aerodynamic forces on the airplane. This is
apparent from a review of works on this subject such as those by Bisplinghoff and Ashley
(ref. 1), and Milne (ref. 2).

The formulation used here is called a lumped parameter formulation. It facilitates the
use of aerodynamic influence coefficients that relate a change in aerodynamic force on a
small region of the airplane’s surface, a panel, to an average change in flow incidence at
another panel. This aerodynamic representation is particularly well suited for making
empirical corrections to account for separated flow, viscous phenomena, and other
aerodynamic phenomena that are not readily predicted theoretically but are of considerable
concern to the stability and control engineer.
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The basis for the lumped parameter formulation is described briefly in this section and
in more detail in app. A. A complete description may be found in Bisplinghoff and Ashley
(ref. 1). It usually is used in flutter analysis, although it has also been used to predict the
longitudinal stability of flexible airplanes. It is the basis for the prediction of the
longitudinal stability characteristics of the SST configuration appearing in this volume and
in app. C. The formulation appearing in this section and in app. A is more general. This
extended generality is included in the expectation tnat an aerodynamic influence coefficient
method for wing-body combinations in nonsymmetrical motion can be developed. It also
incorporates the useful approximation called residual flexibility, which is introduced by
Schwendler and MacNeal (ref. 5). -

The presentation appears in the form of a derivation. This form of presentation is used
merely to introduce the principles on which the equations are based and to delineate the
most important approxim.:tions which are included in their formulation. The derivation is
not complete, although it may appear extensive in the flexible airplane case because of its
inherent complexity. A detailed derivation appears in app. A; related derivations concerning
aerodynamic and structural theories are provided in app. B.

Figure 2 summarizes the various forms for the equations of motion appearing in this
section and gives a brief description of the approximations that characterize them.

5.1 Equations of Motion For a Rigid Airplane

5.1.1 General equations of motion.— The equations that govern the motion for a rigid
airplane follow directly from fundamental principles of mechanics. These are the laws of
conservation of momentum, which state that the rate of change of linear momentum is
equal to the total force applied to the airplane and that the rate of change of angular
momentum about the center of gravity is equal to the total applied force couple (or
moment) about the center of gravity. They are stated analytically as

av, N
M"&‘;=M§+£ F ds (1)
d 7% =/ FxTFas
at W w)-s rxF (2)



Mcditication

Formulation

General equations
of motion

Equations 5 and 6

Perturbation
substitution

»
ot

Y

Arbitrary perturbation
equations of motion

Equation 14

Small orientation
angle perturbations

Y

Large perturbation
equations of motion

Equation 16

All perturbation
variables are small

Y

Y

Small perturbaticn
equations of motion

Equations 17 and 18

Character

-
L]

Nonlinear; dynamically couple.
longitudinal and lateral-directional
motions; no simplifying approxima-
tions

Nonlinear; dynamically coupled
longitudinal and lateral-directiona)
motions; no simplifying approxi-
mations; no restrictions on mag-
nitudes of perturba.ion variables;
stability analysis by time histories

Nonlinear; dynamically coupled

longitudinal and lateral-directional
motions; no restrictions on mag-
nitude of perturbation variahles,
except that orientation angle per-
turbations admitsin & ~ &,

cos @@= 1, sin =P, and cos@=

1, etc; equations of motion for
reference motion are sepai able;
stability analysis by time histories

Linear; dynamically uncoupled;
equations of motion for reference
motion are separable; stzbility
analysis by characteristic roots

FIGURE 2.— MODIFIED FORMS OF EQUATIONS OF MOTION
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where

total airplane mass

= velocity of the airplane c.g. relative to earth-fixed-axis system (x',y',Z ), fig. 3
= gravity force per unit mass B

surface force per unit arec

airplane’s total surface

inertia tensor expressed as a diadic

=TI+ I +K LK - 1Lk -K L i

= rate of rotation of airplane relative to e.rth-fixed-axis system

position of an arbitrary Q point relative to airplane ¢.g., fig. 3

=)wn “nloo;n<‘ =
|

®
:t SIL

P = Center of mass
ro. = Position of center of mass

FIGURE 3.— AXIS SYSTEM FOR THE UNDEFORMED SHAPE OF AN ELASTIC AIRPLANE

The time rate of change d/dt is that apparent to an observer in the earth-fixed-axis system
x",y’,z’, which is assumed to be an inertial reference frame. Thus, letting 3/9t represent the
time rate of change apparent to an observer in a body-fixed-axis system x,y,z and letting a
dot () represent the partial derivatived/dt, the equation of motion may be expanded as
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M(Vc+wac) =M§+I-"‘A+'FT (3)

+ MT (4)

where

and ]
MA+MT=f rx Fds .
S
and where -IEA and -I\EA are the total force and moment due to aerodynamics and -I‘?T and HT
are the total force and moment due to the thrust of the propulsion units.

Equations (3) and (4) represent the general equations of motion for a rigid airplane.

The x,z plane of the body axis system has been made to coincide with the plane of
symmetry of the airplane so that the inertia diadic contains only the Iy, product of inertia.
Certain assumptions have been used in writing these equations. They are:

Free flight only

Origin of coordinate system at the center of gravity

Airplane mass and mass distribution constant with time

No consideration of electromagnetic effects

No spinning rotors

Symmetric airplane

Equations (3) and (4) may be expanded as six scalar equations, but before they may be
so expanded the gravitation force vector must be written in terms of the body axis system.
A convenient form is obtained in terms of Euler orientation angles. These angles orient the
airplane in space relative to the earth-fixed-axis system, as shown by fig. 4. Let Z'in the
earth-fixed system be directed positively down toward the earth’s center, and let x' have
some specified direction. Let axis system x,y1,z] be initially codirectional with the xy'z
system but with origin at the airplane’s c.g. Introduce the rotation ¥ about the z| axis,
which rotates a system x9,y,zp such that x is in the plane of airplane symmetry. Then
rotate a x3,y3,z3 system about y; through the angle 6 so that x3 coincides with x. Finally,
rotate about x3 through the angle @ so that y3 coincides with y. This completely orients
the airplane relative to the earth-fixed-axis system. One may choose alternate definitions of
the Euler angles; the definition presented here is the one used by Etkin (ref. 4, p. 100).

EEOEE®
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X / o Y2Y3

i\ X'Y'Z’ Parallel to earth’s axis
i\ XYZ  Earth-fixed axis
_,"._o/\ Note: Rotation sequence is:
i \ L AN

232'

FIGURE 4.— EULER ANGLES

The gravity force vector is in the direction of z', i.e., o= ch'. The transformation of g-l?

to body-fixed axis is given by

gk' =-gsing1+gcos6singj+gcos 8 cos o K

Now, the general equations of motion may be written as six scalar equations in terms of the

body axis system as

MU+ M (QW -RV) =-Mgsing+F, +F

AX TX
MV + M (RU + PW) = Mg cos 6 sing + F, +F,
y y
MW+M(PV+QU)=MgcosOcos ¢+FA +FT
Z Z

LyP L, R+QP)+ (I, -1 )QR=M, +M,

X X

(5a)
(5b)
(5¢)

(5d)



. 2 2 _
L, Q+L, (P -RY+ ([, -1 )QR=1M, +Mp (5e)
Vi, ¥
+

M, (50

| R-IXZ(P—QR)+(IXX--IZZ)PR=MAz .

ZZ

These are six equations in the eight unknown quantities, U, V, W, P, Q, R, ¢ ,and 6. The
aerodynamic and thrust forces and moments in the right-hand members are functions of
these eight quantities or their derivatives with respect to time and, possibly, control
variables. The control variables are regarded as known functions of time.

A complete <=t of equations is obtained by introducing the following two kinematic
relations obtained from the Euler angle definitions:

é=Qcos¢—Rsin¢ (6a)

@ =P+Qsingtand + R cos ¢ tan 9 (6b)

The heading angle for the airplane may be obtained from the additional kinematic relation

P =(Q sin ¢ + R cos ¢) secd )

Equations (5) and (6) are eight equations in eight unknowns. They may be integrated if the
aercdynamic and thrust terms are specified functions of the 1otion variables, but they are a
nonlinear system of ordinary differential equations. If initial data, consisting of U, V, W, P,
Q, R, 6, and ¢ specitied at an initial instant of time t, are given, then in general it is
possible to integrate equations (5) and (6). This results in a determination of the variables at
times later than t,. Because of tae nonlinearity of these equations, however, integration is
possible only by mechanical quadratures, except for exceptional cases consisting of steady
motion of the airplane.

Fortunately, the cases of steady motion that satisfy equations (5) and (6) represent
solutions that are of prime interest. They are the subject of the following paragraph. The
stability of an airplzne in these steady motions, i.e., the tendency for the airplane to persist
in the steady motion when disturbed from it, is evaluated using perturbation forms of the
general equations of motion, equations (5) and (6). These perturbation forms are discussed
in pars. 5.1.3 and 5.1.4. Paragraph 5.1.4 also introduces expressions that describe the
dependence of the aerodynamics on the motion variables.
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5.1.2 Steady reference motion.— In a steady reference motion all of the derivatives

with respect to time in equations (5) vanish. The equations of motion must be satisfied tor
the airplane to be in equilibrium. Therefore, the steady vel?cities (denoted with a subscript
oneas Uy, V], Wi, Py, Q, Ry) must satisfy

M(QlW1 - R1V1) = - Mg sin 01 + FA + FT (8a)
X X
1 1
M(RlU1 - P1W1) = Mg cos 01 sin 2 + FA + FT (8b)
i N
M(P1V1 - QlUl) = Mgcos 01 cos ¢1+ FA + FT (8¢)
Z Z
, 1 1

- Ixz lel * (Izz - Iyy) QIRI - MAx * MTX . (8d)

1 1
2 2 _

IXZ (P1 - R1 )+ (IXX - Izz) PlRl = MA + MT (8e)
y y
1 1

Ixz QlRl * (Iyy - Ixx) PlQl - MAz * MTz (89)
1 1

and the kinematic relations
. = _ . )
8, Q, cos ¢, Rl sin o, (9a)
3 = i 9
¢1 P1_+ (Q1 sin ¢, + R1 cos ¢1) tan 01 (9b)

Rates of change of the Euler angles §1 and ¢ have been admitted, but it must be
recognized that this leads to time rates of change in the components of gravity force in the
right-hand members of equations (8a), (8b), and (8¢). The left-hand members of these
equations are invariant in time. Thus, in the case of motion in which 9 1 and wl are
nonzero, to maintain steady motion the aerodynamic forces and moments, or those due to
thrust, must be controlled in such a manner as to balance the gravity force changes. In all
cases for which él and ¢ | are zero the aerodynamic and thrust terms are constant during
the steady motion.



Four of the most important steady reference flight conditions for assessing the stability
and control characteristics of large airplanes are level flight, climbing flight, turning flight,
and pullup. The steady velocity components and Euler angles and the equations of motion

for those four cases are as follows: .
a. Steady, level, rectilinear flight:

V1=P1=Q1=Rl=¢1=0 s 01=constant

v

- Mg sin 31+}3‘Ax +FTx =0
1 1

FA +FT =0
Y1 Y1

Mg cos ()1+FAZ + FTZ =0 (10)

1 1

MAx +MT‘{ =0
1 “1

MAz +MTz =0
1 1

t Steady, climbing flight: . B I
The equations are identical to equations (10), aithough it must be noted that
atmospheric density variation will lead to unsteady motion for constant control

settings. However, this unsteady motion may be regarded as negligible for shallow
climbs over moderate time periods.

c. Steady, turning flight: -
V1 =0 |, 81 = constant and ¢1 = constant

MQ1W1=—Mgsin 61+ FA +FT

X1 X1
M (RlU1 - P1W1) = Mg cos 61 sin q)l + FA + FT
. i vy
- MQIU1 = Mg cos 61 cos ¢, + FA + FT (11)
Z z
1 1
"L Pt O, - Iyy) QR, = MAx * MTx
1 1
I ®2-R3H+(1_-1_)P.R, =M, +M
Xz 1 1 xx ‘zz' 11 A T
Y1 Y1
e QB * Oy =L P19y = MAZ *Mp
1 1

where the kinematic relations, equations (9), may be used to eliminate Qq and P| by
introducing
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d. Steady pull-up:

V1=P1=R1=O and ¢1=O
MQ1W1=—Mgsin 61+FAx +FTx
1 1
FA +FT =0
Y1 ¥y
~MQ1U1=Mgcos 61+FA +FT =0 (1
Z Z
1 1
MAx +MTx =0
1 1
MA +MT ={
Y1 Y1
MAZ +MTZ =0
1 1

To maintain a steady pull-up it is necessary that

Mg cos 91 Q1 =FA + FT
X Xy

and

Mgsm91Q1=FA +F



5.1.3 Perturbation equations of motion.— Many of the major objectives of a stability
and control evaluation of an airplane are achieved by considering motion deviating from a
specified steady reference motion of the airplane. Thé deviation is often termed a
perturbation, and the variables that describe the motion are taken to have values consisting
of the sum of the reference value and a perturbation value. The notation of par. 5.1.7 is
used to identify the reference values of the variables, while a lowercase letter or a subseript
p is used to identify the perturbation values, e.g.,

U=U1+u

t9=01+9p

The perturbation equations of motion are obtained from the general equations of
motion, equations (5) and (6), by replacing the velocities, accelerations, and Euler angles
appearing in those equations by the sum of a perturbation and a reference value. The
reference values correspond to steady motion so that their derivatives with respect to time
vanish.

The substitution of perturbation and reference values for the values of the variables
appearing explicitly in equations (5) and (6) does not constitute an approximation.
However, an assumption is made regarding the aerodynamic and thrust terms. These terms
are functions and are, in general, functions of the velocity of the airplane and its
acceleration. It is assumed that the functionality is such that it is possible to write

FA=FA1+fA ; FT=FT1+fT
. = = (13)
My A1+mA v Mg MT1+mT

Clearly, this eliminates functionality that is transcendental as in the case of the gravity
forces that have transcendental (harmonic) dependence on the Euler angles.

The perturbation form for the equations of motion may now be written as

Mu + M[QIWl - RIV1 + Qlw + qu +qw - Rlv - Vlr - rv]
- . (14a)
Mgsm(01+ ep)+}3‘A +FT +fA +fT
Xy X, X X
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MY+ M@®R, U -P,W, +Ru+Ur+ur -Pw-W, p-wp)

= 1 n % (14b)
Mg cos(e1 + Gp) sin (q)1 +¢p) + I‘A + FT + fA + fT
Y1 ¥y y y
Mw + M(PlV1 - Q1U1 + Plv + le + pv - Qlu - Ulq - qu)
= (14c)
Mg cos (91+9p) cos(qt:1+q)p)+FA +FT +fA +fT
zq zZq zZ z
@ IXX p- IXZ (r + le + qu + pq) + (IZZ - Iyy) (er + qu + rq}
= (144)
mA + mT
X X
I 4+1_ (2Pp+p2-2R.r-1t)+(_ -1 _)(P,r+R,p+rp)
vy XZ 1 1 XX zz 1 1
= (146)
My *Mp
y y
LgT ~ gy 0 -Qr ~Rya —ar) + (I - L) (Pa+Qp+pa)
_ (146
. mA +mT
Z Z

Equations (14) are called the arbitrary perturbation equations of motion. The term
“arbitrary” is used because notestrictions have been placed on the admissible magnitudes of
the pe.turbations. They govern the motion of a rigid airplane to t! same order of
approximation as the general equations of motion, equations (5), except that the
aerodynamic and thrust terms have been separated into reference and perturbation terms.
That separation led to a simplification of equations (14d), (14¢), and (14f). Since the values
of the reference motion variables satisfy the equations of motion themselves, those terms
involving only reference motion vanish. This simplification is not possible in equations
(14a), (14b), and (14c) because of the sine and cosine functional dependence of the gravity
force components.

Large perturbation equations of motion are obtained by restricting perturbations of
the Euler angles 8 and ¢ to a magnitude less than about 7.5 deg. Then the trigonometric
functions of these angles are approximated by



p p ’P
cos q)p ~]1 sin ¢ —zqo. (15)

Introducing the approximations of equations (15) into equations (14a), (14b), and
(14c) leads to

Mu + M(@Q,w + W,q +qw -R,V - VT -1v)

o (16a)
= Mg ep cos 91 + fA +fT
X X
MV + M(Rlu +U,r+ur -P.w-W,p - wp)
_ . . (16b)
=Mg (-Gp sin 01 sin ¢, + ¢p cos ¢1 cos 91) + fA + fT
. S y y
Mw + M(P,v+V.p+pv - Qu-Uq -qu)
(16¢)

= - i 3 £
Mg (ep Siu 6, cos o, + .¢p sin 9, cos 6,) + fAz + "Tz

Equations (16) along with equations (14d), (14e), and (14f) represent large
perturbation equations of motion. It should be noted that terms involving products of fp
and ¢, have been deleted. This is consistent with the approximations represented by
equations (15), which are truncated power series expansions of sine and cosine functions.
The system of equations is linear in terms of the perturbation Euler angles but nonlinear in
the perturbation velocities.

Small perturbation equations of motion are obtained by deleting products of the
perturbation motion variables, Equations (14) reduce to

; - - = 17
Mu + M{Qw + W,q -Rv - V.r) = Mg 6, COS 0 + fo + fo. (172)
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y = W = - i i
w - W 1p) Mg ( ep sin 01 sin ¢1

My o+ M iF - Py
(17b)
L - cos9)+fA +fT
P 1 1 y y
M+ M(P,v -+ le - Qlu - U1 q=-Mg( p sin 1608 4
) (17¢)
+¢ sineg, cos @) +f, +1§
p 1 1 Az TZ
b ~Lyy 4 QP+ Py 4 (L, ~1p) @+ Ry@) =my +mg (174)
Iyyq +2 Ixz (Plp - er) + (IXX - Izz) (Plr + Rlp) = mAy + mTy (17e)
Lot "l @ -QT ~R @+ (A, - L) P4+ Qp) = mp mp (176)
and the kinematic relations, equations (9), become
) =- i - -1 si 8a
6, =-Q, 9,sine, +qeos ¢ -Ry 9, COS 9) - T sit 9, (18a)
% =p+(Q 9, 08 ¢, *rsing, -R, ¢>p sing,
(18b)

+ q cos ¢1) tan 91 + (Q1 sin ¢1 + R1 oS 9)1) ¢p

The terms in the small perturbation equations of motion appear to be of consistent

order of magnitude. They are a set of linear ordinary differential equations provided the
aerodynamic and thrust terms are written as lincar functions of the perturbation motion
variables. The form of the aerogdynamic and thrust terms is the subject of par. 5.1.4 and app.

B.



;An additional simplification is possible if consideration is given to the oruers of
magnitude of the reference motion variables. In the analysis of airplane response, the
perturbation motion variables have small but finite values. The limits on the validity of the
application of the small perturbation equations are set primarily by the limit of validity of
linear aerodynamic theory. In many cases, this limitation may ~pply equallv to the
prediction of the aerodynamic forces associated with the reference motion; hence, in these
cases the reference motion rotation rates aud sideslip velocity must »e limited to the sam-
orders of magnitude as those of the perturbation variables

Equations (17 apply to the case of stability and contrel anatysis when the
aerodynamic terms are obtained from a linearization of the aerodynamics about some
condition where the aerodynamic phenomena are basicallv nonlinear. The perturbation
motiun variables in this case are then limited in magnitude by the range of validity of the
linearization. Aerodynamic terms in this case are cbtained empirically from test data.

Many impértant stability and control evaluations are performed on coses where the
magnitudes of the reference motion variables are sufficiently smail to permit their products
with the perturbation variables to be neglected. This is the case where stability and control
characteristics of transport aircraft in their cruise condition are concerned. For these cascs
the small periurbation equations may be reduced to

Mu + Mqu = Mg ep cos 61 + fA + f’I‘ (19a)
X b4
v - = i ine. - + {
Mv MWlp ’\/Ig(ep sin 01 sin ¢, op cos 9, cos 01) + fAy ny (19b)
Mw - MUlq = -Mg(ep sin 91 cos ¢1 +q>1psm q)l cos 61)+ fAz + sz (19¢) @
[} - . = 9d
Ixxp Ixzr m, +mg (19d)
X X
I ¢=m, +m (19e)
* A T
yy y y
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T r-1_p=m, +m (195

and the kinematic relations reduce to

op =q €os 61 - r sin ¢l (20a)

o, = p + (r sin 9, +qcos q)l) tan 0, (20Db)

5.1.4 Aerodynamic derivatives.— The concept of an aerodynamic derivative or, more
commonly, a stability derivative is developed in app. B. It relates a component of
aerodynamic force or moment acting on an airplane to a motion vanable or a parameter that
describes a change in airplane shape such as a control surface deflection angle. The change in
airplane lift with change in airplane angle of attack is expressed as

QO

L

1
¢ GS o

Lg

The notation of a partial derivative is appropriate, since all other motion variables and
shape parameters are held constant while the angle of attack is allowed ©  iry. Besides, the
lift is not, in generzl, a linear function of angle of attack or any of the other variables that
influence _he airplane lift. The stability derivative CLoz , therefore, varies with the airplane’s
flight condition. For perturbation motion of the airplane about a reference motion, the
stability derivative is evaluated for the reference motion and may be considered to be
constant in the perturbation motion. This local linearization, discussed more fully in Sec. 7
of this volume and ia detail in app. B, is a widely accepted practice (refs. 4 and 6). The basic
mathematical theory is given by reference 7.

Another widely accepted practice is to introduce a stability axis system (ref. 4, p. 103).
This is a body-fixed-axis system having X forward and in the direction of the freestream
v=locity in the reference motion of the airplane. The body axis system X,Y,Z is rotated
about the Y axis from the stability axis system by an angle aef, as shown in the following
sketch:



where _\71 is the freestream velocity vector in the reference motion so that -\71 = -Vcl. The

purpose of the stability axis system is to introduce a simplification in the equations of
motion, which is discussed in ref. 4 but is not used in this study.

The reference angle of attack is used but is denoted as «y, i.e., the angle of attack in
the reference flight condition. Lift and drag of the airplane are measured in a wind axis
-system such that in reference flight

FA = - D1 cos a, + L1 sinozl
X
1
aIld = i -
FAz D1 sin a; L1 cos a;
1
In the perturbed motion
FAz =.- D cos (al +a) + L sin (0 +a)
FAz = - D sin (oz1 +a) - L cos (al + Q)

Using these relations and the small angle approximation such that

sin (011 + @) =~ sin @, + @ cos ozl

and

cos (@, +a)=cosa, -asina
(1 ) 1 1
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the perturbation aerodynamic forces

fo = - €0S @y DP + sin o Dlo:+ cos a; L1a+ sin Lp
+ sin al Dpoz + QoS “1 Lpa
(21)
= - - si - + qi
fAz cos D1 - sin o, Dp cos a, Lp sin oy L1 o
- ¢os 0:1 Dpa + gin o) Lpoz
for small perturbations, products of perturbation quantities are neglected so that
fo =-cosa; Dp + sin o) Dpa + COS o, Lla + sin a; Lp
(22)
fAz =-cos D1 @-sinae; Dp - Cos al Lp + sin o Lla

The perturbation components of aerodynamic force and mom.nt are written in terms
of stability derivatives as (app. B)

=G u _Bb_
D, =9; 8y [(CDu+2CD)V *Cp |8l +Cp. 5%
c B8 c
1 1
ac pb qc
*Cpa® " Cp,2v. " lz v_| " “p, IV, (232)
1 P ' 1 a ¢
rb
+Cp |eo—| Z Cp 9
r c1 i éi
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fA qlsw 2Cy,V +Cy gB+C
y i'c B
rh
Cy 2V E C 61
r c1 i 61

(23b)

(23¢)

(£3d)

(23e)
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The perturbation components of thrust forces and moments are

X X, ¢ n
= LU
fr =9; 8, (2 Cr. V" Cr "J)
y 1.4 yn.
J
_ u
fp =8, (2C, g-+LCq "3)
zZ Z, ¢ j z
1 71 'nj
u (23g)
me qls b(chl —‘-/-;'TZCTI 7)]
1 &4 nj

y G My
j
- w
M —qlswb(ch v+ LS "J\)
z n, 'c j n
1 71 nj

The above results may be combined with the perturbation equations of motion of par.
5.1.3. The perturbation force components in the X and Z directions must be computed
differently for large and small perturbations. Equations (21) must be used to relate
perturbation lift and drag to the X and Z directions for large perturbations; for small
perturbations equations (22) must be used.

5.2 Equations of Motion for a Flexible Airplane

5.2.1 Lumped parameterization.— In the preceding section, the motion of a rigid
airplane was described in terms of six degrees of freedom of the airplane’s center of
gravity—three translational and three rotational. The effects of inertia and gravity can be
completely accounted for in terms of forces and moments applied at the airplane’s center of
gravity. And, although the distribution of aerodynamic surface stresses depends on the
shape of a rigid airplane, its dependence upon the rigid airplane’s motion may be expressed
entirely in teims of the motion of its center of gravity. Finally, the effects of the
aerodynamic surface stresses on the rigid airplane’s motion are accounted for by
aerodynamic forces and moments acting at the airplane’s center of gravity.




-When an airplane is flexible, however, motion which is relative to the center of gravity
must be considered. Equations of motion written entirel)f in terms of center of gravity
motion variables and in terms of forces and moments considered to act at the center of
gravity are no longer sufficient. The additional n:+t.on is called elastic motion, and it is
common terminology to refer to “elastic” degrees of freedom.

The flexible airplane is essentially a continuous, elastic body. ‘As such it has a
continuous infinity of elastic degrees of freedom. Thus, unless some simplifying approxima-
tions are introduced the equations of motion for the elastic motion will be integrodifferen-
tial equations (app. A, equation (6.35)). To avoid this complication the airplane is divided
into a large number of elements. Each element is regarded to have at most six degrees of
freedom. If their number is n, the equations of motion of a flexible airplane will govern
motion in 6n degrees of freedom and be 6n in number. Certain approximations will be
introduced to reduce the number of equations, but the number of degrecs of freedom will
remain effectively unchanged. The motion in some degrees of freedom will be dependent
motion. This is the subject of several later paragraphs in this volume as well as of much of
app. A.

This paragraph, as well as several of those following, makes use of matrices in the
formulation. When matrices of a particular type or matrix operations are introduced, or
properties of a matrix are discussed, an article will be cited from Frazer, Duncan, ar d Collar

(ref. 3 ,. The reader may refer to the cited article for the appropriate explanation.

Letting the total volurae of the airplane be represented by V and the volume of the ith
element by Vj, then

v=), A (24)

The total mass of the airplane is M and the density is pa. The mass of the ith element is,
therefore,

m, =‘/;,i Py av (25)

Also, recalling that T is the position relative to the airplane’s center of mass, the position of
the ith lumped mass is taken to be at the point

I‘i—'l'ﬁ‘i Vil‘ PAdV (26)
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This is the centroid of m; and, although refinements may be introduced, the density is taken
to be uniform over the element of volume Vj sc that

b

- 1f .
ri__V; VirdV (27

which is the location of the geometric centroid.

The geometry of the flexible airplane is defined as shown b); fig. S.

Deformed shape

Y

Undeformed shape

X' Y'Z' Earth-fixed axis

’

Nt

FIGU. »— AXIS SYSTEM FOR THE DEFORMED SHAPE AND THE UNDEFORMED SHAPE
OF AN ELASTIC AIRPLANE

The elastic displacement of a mass particle is a vector, -cT, which is a function of
position and time. It describes the change in position relative to the airplane’s center of



gravity. This elastic deformation carries each mass particle from its position, -'rc, in the
undeformed airplane to its position, T, in the deformed airplane. Thus, the elastic
displacement vector is a function of position and time as %

d=4(, ¢

where it may be noted that the dependence o.7 p-sition has been written as a function of its
undeformed position, T. This is referred to as a agranzian description (ref. 8, p. 29).

For the lumped parameter formulation each volume element is taken to displace as a
whole with the mean displacement siven by

d "= Jv, A ddv (28)

The totality of all elastic displacements is written as a column matrix (ref. 3, Art. 1.2) as

T
fa}'=d ,d ,d ,d ,d ,d ,...,d ,d ,d (29)
L% Y1 21 Xg Vg Zg Xy Yo %y

Elastic rotations relative to the airplane as a whole occur for a mass particle and are
given as

Txd

DO | =t

When the airplane structure is regarded as a continuous body, the rotation of the mass
parti¢les does not contribute to the inertia forces. When the airplane is represented by a
collection of elements with lumped masses, it is tempting to include rotational degrees of
freedom and the rotational inertias of the lumped masses. But on consideration of the
practical numerical problem of predicting the motion of the lumped masses, it is better to
neglect rotation and include only the inertia forces generated by their mean translational
motions.

The number of dynamically participating degrees of freedom that may be included in a
numerical analysis is limited. Let the upper limit of that number be m. If rotational degrees
of freedom are included dynamically, the total number of lumped masses is m/6. If they are
ignored, the number of lumped masses may be twice as great, i.e., m/3. The larger number
of lumped m1sses more closely represents the continuous airplane. The smaller number must
have mean rotations that are not readily defined as well as moments and products of inertia

40



that are even more difficult to define rationally. Therefore, the formulation that ignores the
dynamics of mean rotations of lumped masses is the better approximation.

' )

Tt must be clearly understood that rotational motion of the lumped masses has not
been set to zero in the above. In fact, the aerodynamic surface stresses are dependent upon
the surface slope of the airplane, and the surface slope changes as the airplane deforms
elastically. The lumpzd surface slope (or mean slope) will be related to a mean rotation of
the element, so that these quantities enter the problem through the aerodynamics even
though their dynamic influence is neglected.

It is desirable to have a convenient method of computing the mass properties of the
entire airplane from the values of the lumped mausses and their positions relative to the
center of gravity of the airplane, Tj. To do this consider the manner in which the moments
and products of inertia are introduced in mechanics, i.e., as a consequence of the integral
expression for angular momentum about the center of gravity:

70 - /;,‘fx @xT) by AV

This expression may be replaced by

- i n — — el
¢'w=z_: /;..rx(wxr) py AV
i=1 i
z“:... - -
= r.x(wxr,)m
P i i

so that the entire angular momentum is replaced by ihe sum of the contributions to the
angular momentum by each lumped mass. Similarly, the total linear momentum is

-y n -
MV, = gl m; V, (30)

Introduce the diagonal mass matrix (ref. 3, Art. 1.2), tm] , as defined in app. A, par.
6.3.1,i.e., :



Fad
']

1 m,
m, "
2
~ m2
[m] = m, (31)
‘m
"m
n
m
n
and the rigid-bddy mode shape matrix [()] defined as
-
| @,
(B,]
® = - (32a) @
where
100 O zZ; Yy
i(pi] =1010 -2 0 x (32b)

Also, introduce the velocity matrix, written in transpose form (ref, 3, Art. 1.2) defined as

v¥T=|u,v,w, P, Q, R | (53)
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so that components of momentum may be written as

-®

¢ _ | =181  [m]1®1 {v}=1m1{v} (34

. where the definition of the inertia matrix [M] is given by

(M]= (31T fm] (§] (35)

Thus, the components of linear and angular momentum for the airplane are obtained in
simple matrix expressions, equations (34) and (35).

The aerodynamic and thrust forces act at the external surface of the airplane. Let the

total external surface, S, be subdivided into the external (exposed) surfaces of the lumped
masses, Sj, so that

n
S=2, 8, (36)
oy 1
i=1

Then the total aerodynamic and thrust forces on the airplane may, in accordance with
equation (3) and this subdivision of the surface, be represented as

"
Mo
o=

FA+FT .FdS

1 i

i}

i

i

e

A=
v



- where Fj is the fo - on the ith lumped mass. Similarly, from equation (4)

Wy i, -3, [ FxFas
Yo=Y,
1
i F
=) T.xF
=t

Now, introduce the matrix definitions of the components of the aerodynainic forces and
moments:

T _ . .
{FA} = LFAx’ FAy, 1«AZ, MAX, D.“‘v MAVJ (37)

the components of the thrust forces and moments:

T
{fFr} = Foo v P , By, M, , M, , M (38)
T LTX Ty Tz Tx Ty Tz_l
and the componen‘s of element surface forces:
T
F}=F,F r ,¥ ,'*',F ,F ,F (39)
{ Lx' v s % X Va7

Using the rigid-body mode shape matrix [@ ], it follows that
T

e {ref = [0] {7} 40)

so that a simple matrix expression relates t surface stresses ‘o cverall airplane forces a:d
moments.



The results presented in this section form the basis_for representing a continuous,

" flexible airplane as a collection of lumped masses. However, neither of two important details

have as yet been considered. These are the dependence of elastic constraining forces, and the
dependence of the aerodynamic forces, on the mean elastic displacements {d}. The elastic
constraining forces are discusscd in par. 5.2.2. The aerodynamics are discussed in Sec. 7.

The thrust forces may seem to have been slighted in the discussion. However, their
direct effect in terms of forces applied at the engine attachment points may be readily

-introduced in an cbvious manner and the induced effects on the aerodynamic forces must

be accounted for in the stability derivatives.

5.2.2 Structural flexibility.— The flexibility of the airplane is fundamental to the
considerations of this report. This paragraph introduces concepts to describe what is meant
by flexibility in physical terms and presents the equations that describe it. An exposition of
the theory underlying these equations is the subject of par. 4.2.3 of app. B. It suffices to
note here that the underlying theory is that for infinitesimal deformation of a perfectly
elastic, isotropic, and homogeneous solid. It is often called the classical theory of elasticity
and is a linear approximation of an exact, nonlinear theory of elasticity.

The change in shape of an airplane when it is subjected to external loads is a
manifestation of structural flexibility. The magnitude of the change, viz; deflection or
deformation, is in approximately constant proportion to the load producing it. Thus, the
deflection measured at a point A on the structure is linearly related to the load P at another
point B. This is expressed as

6=CP (41)

where the corstant of proportionality, C, is termed the flexibility of the structure associated
with the two points, A and B.

A general description of deformation follows by considering two positions of each
point of the structure. They are the position T before deformation and the positionT after
deformation, both of which are measured relative to the airplane’s center of gravity. The
deformation or displacement vector is given by

I-7-F (42)

The displacement vector was originally introduced in par. 5.2.1, where the mean
displacement of an element of the airplane was defined by equation (28) as



In the following, the mean displacement vector at the ith element is relut. .
applied at the ith element as well as all other elements.

The mean surface force on the jth element is:

—-— 1 —
F.=——f Fds
S. S.

S Y

An element of the airplane also experiences body forces such as inertia an:? _-
These are proportional to the airplane density, and the mean values for the ==

defined as
2—- ’
ﬁli/},‘k Qg}-;g dv
) j dt

* ~
where 427 /dt~ is the acceleration relative to the earth-fixed reference system.

The mean displacement of the ith element <12 to forces applied to the
defined as

a--< R z«“)
and the displacement of the ith element due to forces at all elements is given

— n -— -t —
dfﬁz.‘caf(%'FO
j=1 ij

Further, this expression is valid for all elements, so that there are n equations 1%
(45b).
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The subscript zero on the diadic EOi- is used i > indicate that the structure is clamped at
the center of gravity, i.e., the point on thd airplane that was at the c.g. before deformation is
constrained against translation or rotation. That point may be allowed ¢o translate as -50
relative to a reference axis system with origin at the airplane’s c.g. It may also be allowed to
rotate through an angle §0 relative to the reference axis system. Thus, the mean
displacementﬁi relative to the reference axis system is given by

,, n
d -d -T,x8 =-3 C_ -(Rj - Fj) (46)
i=1 1ij .
By defining the column matrix
o Yo o %o Yo o_

the matrix definitions of par. 5.2.1 may be used to write equation (46) as

SRCISRERY)

where the flexibility matrix (ref 3, Art. 8.11), [Cy], is made up of n submatrices 3 by 3 in
size and given by

CC C o |
oxxij oxyi]. oxzi].
C C C
oyX;s oYYy oyzy,
c C C
L 0zX;; 0zy;; 0z, |

so that the flexibility matrix [Cyl is 3n by 3n in size. The typical element Cozyij is the
component of deflection in the z direction at the ith element due to a unit component of
force in the y direction at the jth element.



Equation (48) is the result required in the equations of motion of a flexible airplane
represented by lumped parameters. However, the flexibility matrix must be computed from
consideration of the structural details of the airplane. The flexibility matrix so derived will
not bz in the fonn defined for equation (48). The structyral analysis treats the airplane
structure as a continuous body. Thus, the flexibility matrix [Cy] must be obtained from a
continuous analogue using the type of averaging process that led to definitions of mean
displacements and forces in par. 5.2.1.

The problem of computing the flexibility matrix [C,] is complicated by the fact that
the structural analysis leads to a flexibility matrix that relates displacements at points to
forces applied at points. The method of computation of [C,] is not immediately obvious.

The structural analysis deals with an idealized structure made up of a collection of
‘simple structural elements (app. B). For example, a typical wing structure is made up of
panels of skin cut out by ribs and spars, the webs of the ribs and spars, as well as the rib and
spar caps. The structural properties of each of these elements are known. The structural
ana.ysis proceeds by requiring the forces on the elements to be in equilibrium and by
requiring the elements to remain joined together under load, i.e., continuity. The problem
arises from the fact that this leads to a flexibility matrix in terms of forces and
displacements at the points where the structural elements are joined.

Joining points appears inaccurate for the joining of some elements, e.g., a spar cap and
a spar web. These elements obviously join along a line. The structural analysis will not
satisfy continuity along the entire line of intersection. It will satisfy continuity only at a
finite number of points, called node points, on the intersection.

One method of structural analysis, the displacement method, is readily illustrated by a
simple one-dimensional example. For greater detail, reference is made to app. B. Consider an
assemblage of springs:

Ka Kb KIc
O AANANNAN == AANANVN-O-A VW0
1 2 3 4

The springs have stiffnesses represented by K,, Ky, and K¢, and the nodes are numbered as
shown. There will be four nodal forces, F; and four nodal displacements, d;. Even though
forces exist in the springs at all points between nodes and all interior points undergo
displacement, only the nodal values will be required for the structural analysis.

i

-1
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The element stiffness matrix for the spring from node 1 to node 2 isa 2 by 2 matrix.
The first column is the forces at the nodes for a unit displacement of nodc 1 to the right,
ie., F] =K,, Fp =-K;. The second column is the forces at the nodes for a unit displacement
of node 2 to the right, i.e., F1 = -Kj, F2 =K, so that the elqment stiffness is given by

fl

Koo Ko [Kb K,

K3 Kgg L_Kb Ky

and

The stiffness matrix for the entire assemblage is obtained by forming a composite matrix as



.
K, K, 0 9
AR Kb)_ -K, 0
< - 0 |-k (K +K)|-K
b Ky, + K| K,
0 0 L'-Kc Kc

and may be used to write

{F} = [x] {a}

49)

or

[ ] [~ - r I
F, K, -K, 0 o | |q
F, K, K, +K, K, 0 | id,
Fo| | © -K, K +K, -K, | |dg
F, 0 0 K, K, | |4,
| L L

The stiffness matrix [K] is singular (ref 3, Art. 1.8). Thus, the displacements are not
uniquely related to the forces. This has to be the case, since an equal addition to each of the

displacements does not cause a change in the forces. That addition would represent a
translation as a rigid body.
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The structure may be clamped at node 4 such that d4 = 0. Now, the displacements are
determinant. Let the matrices be partitioned (ref. 3, Art. 1.7), as ’

)
{Fell _ [®n_ : Kie {det
Fy Ky K 0

so that

(Foh =[] 14

Fao = Ra g {%)

(50)

The reduced stiffness matrix [K“:] has an inverse (ref 3, Art. 1.11),i.e.,

5]

and it follows that

{de} = [Kn] . {F,} 1)

Finding the composite stiffness matrix to be singular in the above example is typical.
The composite stiffness matrix for an entire airplane is also singular. The singularity is
removed by setting enough nodal displacements to zero that the airplane structure is
constrained against translation and rotation. The requirement is satisfied if a single point is
clamped against rotation and translation. When this has been done the flexibility matrix
may be obtlained by inverting the reduced stiffness matrix. The displacements predicted by
this matrix are changes in position relative to a coordinate system with origin fixed at the
clamped point,



The exainple illustrates the use of element stiffnesses to describe the elastic properties
of a structure in ter::s of forces and displacements at the nodes. The forces applied to the
airplane are distributed. Also, the displacements of interest are mean displacements. Thus,
-neither the force nor the displacements used in the aeroelastic analysis are those used in the
structural analysis. This “interface” problem must be solved when the finite element
structural analysis methods are used to define the elastic properties of the structure.

When the aerodynamic surfaces of the airplane are of reasonably high aspect ratio, say
6 or larger, the interface problem discussed above may be resolved by treating the
aerodynamic surfaces as beams. The actual structure is idealized as a beam lying along the
elastic axis (or locus of centers of flexure, ref. 8) of the actual structure. Torsional stiffness
of the elastic axis is defined as the GJ distribution. The flexural stiffnesses of the elastic axis
are defined as the El; and EIy distributions. The volume elements, Vj, of the lumped
parameter description are attached to the elastic axis by rigid, massless members. The
structure appears as in the following sketch of a wing.

/ f \
H 2
/ 2
/ ll - [ s L ’ Elastic axis
LU T TF
7 \\‘4 é i

The lumped masses are located at the centroids and are connected to the elastic axis by the
rigid, massless members shown as dashed lines.

The stiffness matrix may be developed for this idealized structure by the finite-
element, displacement method just described. The flexibility matrix obtained will be
appropriate for the lumped parameter formulation, [Cy]. No interface problems occur and
slopes associated with the lumped masses are readily computed.
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5.2.3 Internal equilibrium.— The basis for writing internal vequilibrium equations for
the airplane was introduced in par. 5.2.2. There it was noted that the st.nctural deflections

[ 4

for the lumped parameter formulation are represented by %

fo}-[0) {8} -~ [o,] (iR~ ir}) ©2)

The matrix{R}is the matrix of body force components acting on the lumped masses.

The body force vector on the ith lumped mass is due to acceleration and gravity. It is

expressed as
R, = & p, av
i v.\ 3 *8 A
i\dt

Carrying out the integration results in

R, = +T ) m,
i d t2 i (53)

where d?-'l?i'}dt2 is the mean acceleration of the centroid of the ith lumped mass relative to
the eartb-fixed-axis system, x',y',z". Letting the angular velocity of the airplane about its
center of gravity be represented by the vector w, the acceleration of the ith lumped mass
may be expanded to give : '

] oV, _ _ % ad
—— = =7 tWxV +—5+ 20 X5
dtz { c 8t2 at
(54)
+§—a’:x*+5x(5x?)
t i i



! *-gT is the time rate of change apparent to an
observer rotating with the airplane
= _dig . . .
Ve=—" is the velocity of the airplane center of

gravity relative to the earth-fixed-axis
system, x' ,y',2'.

It is assumed that the rotation rate oi laige, flexible airplanes is sufficiently small that
the Coriolis forces and a portion of the centrifugal forces may be neglected by comparison
with the other inertial forces, i.e.,

ad,
25x-—aTl- m, ~0 and @x (Wx r) =0 (55) @

so that the inertial force on the ith lumped mass is approximately

- p oyt 2:.
d2ri W, _ - o5 = 974, &
e U I TREMCE R T I 4 (56)

In the case of steady reference motion of the airplane, as in par. 5.1.2, the inertial
forces acting on the mass elements reduce to

dz?; N
m|—s-]=muw,xV (67)
i dtz il cl

where, again, the subscript 1 denotes the values of the motion variables in the steady
reference motion. Also, as in par. 5.1.2, the gravity force on the lumped masses is

gy my=m, g (-sin®; i+ cos ©, sia (Z)l j + cos ©; cos @, k) (58)

The perturbation equations of motion were obtained in the case of the rigid airplane in
par. 5.1.3. It is shown in app. A, par. 6.3, that the perturbation equations of motion for the
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rigid airplane may be expressed in the lumped parameters as
‘.. _qr
[M] ({ vp} + [Ml] {vp } ¥ [Mz] { rop}) - [@] {I‘} (59)

where {Vp} = {v} - {Vv;} is the matrix of perturbation velocities corresponding to the
velocity matrix of equation (33). The perturbation matrix {rg } represents perturbation
of the position and orientation of the airplane’s center of gravity,

T r ’ ’
T = X Py Y 3 z FY 0 » e 3 ‘I’ (60)
{ o p} l__op 0,” ‘o, vp’ “p* "pl

The matrices [Mj] and [Mj] are defined in app. A by equations (6.119) foi small

perturbations and equations (6.12Q) for large perturbations. The matrix EMI} contains

coefficients arising from centrifugal accelerations and [Mj] contains coefficients appro-
riate to gravity forces.

The perturbation body forces acting on the lumped masses of the airplane are given by
{R} - [m\] { ot + (0] [{vp} N [Ml]{vp} + [Mz] {rop }]} 61)

so that the perturbation form for internal equilibrium, equation (52), may be written as

fapt - 0] {B.}=- [C,1[m] {{dp + [BIRY} + [C,1{F} (622

where
{R}= {Vp}+[M ] {vp} + [M,] {r3p} (62b)

This result and equation (59) constitute the perturbation equations of motion for a flexible
airplane.



Internal equilibrium for the airplane in reference motion may be expressed as
{0} =01 (B} =-[C1{{m] [B}(larh () - (Pl ey

where

(g1 {a} are the lumped mass accelerations in the
reference motion and

(@] {a1} are the reference gravity vector components.

A more conve. ient formulation of internal equilibrium may be achieved by
introducing new variables for the elastic displacement {a} . Let

. {4} = [@1{u} ©0) (s2)

where the matrix[@] is a transformation matrix {ref. 3, Art: 9.3) and the matrix {u} isa
column matrix of generalized coordinates.

It is desirable to require that the generalized coordinates be linearly independent. This
is not the case with the elastic displacements {d} , which are displacements relative to the
airplane’s center of gravity. As such, from app. A equation (6.130), it follows that

(@37 ] {d} = 0 (65)

There are 3n components of {d} and, since equation (65) represents six linear relations,
there are 3n-6 linearly independent generalized coordinates {u} . The transformation
matrix [ @] has 3n rows and 3n-6 columns.

A particularly convenient choice for the transformation [¢] consists of letting the
columns of this matrix be the eigenvectors generated fiom an eigenvalue problem
constructed from the internal equilibrium equations.

Let the airplane be at rest, or at most in uniform translational motion in free space,

and let the airplane be in a state of vibration. Internal equilibrium, equation (52), is then
represented by

{d}-[@] {B}=-[c,] [m]{d} (66)
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which, on utilizing equation (65) to determine the elements of { B} , may be written as

{a}=-[C]fm] {d} . (67a)

where
- -1 _ T
[l =[[1]-Bl ] [8] [m)]lc,] (67h)
Introducing the transformation, equation (64), into equation (67a) results in

(@} {u}=-[c] [m] {p} i (68)

where it has been assumed that the transformation matrix is not a function of time. Each
column of the transformation matrix may be taken to be 2 solution to

{0}, =- (T tmI {0}y,

which, by a separation of variables (ref. 9, p. 430), may be written as

[[1] - “’12 [€] tm]] {p,} =0 (69a)
and

i +w. 20 =0 (69b)
1 1 1

where w 12 is the separation constant.

Equation (69a) represents the eigenvalue problem that was being sought. It has 3n-6
linearly independent solutions, eigenvectors, {q)i} corresponding to 3n-5 eigenvalues wiz.
The eigenvectors represent free vibration mode shapes for the airplane. From equation (69b)
it is readily apparent that wj is the frequency of a simple harmonic motion. This is a natural
frequency of the freely vibrating airplane. The eigenvectors {9;} are the mode shapes, i.e.,
the shapes into which the structure deforms when vibrating freely.



The transformation of coordinates, equation (64), may now be given more meaning.
The displacements {d} that describe the elastically deformed shape of the airplane are a
linear combination ’ .

3n-6

{d} = gl {‘Dl} vy

of shapes {¢;}. The generalized coordinates u; are the amplitudes of the shapes. By
properly adjusting the amplitudes, the elastic deformation of the airplane under the action
of any system of self-equilibrating loads may be represented by equation (64). Thus, the
generalized coordinates uj are completely satisfactory for expressing elastic motion. A
considerable advantage accrues through their use. The internal equilibrium equations, when
transformed, assume a form much simpler than that of equation (62).
The perturbation internal equilibrium equations may “e written in terms of stiffness as
(K] {dp} = - [m] {d} + {f} - [m] (] {R} (70a)

where
® =[fo ) - [e @1 Bf" o, @) @17 [0, ] ron

This result is derived in app. A as equation (6.147). On introducing the transformation and
multiplying equation (70) by the transpose of the modal matrix, it is found that

[R]{u} + [m] £i}= (017 {5} (71)

where use has been made of the orthogonulity properties

01T [®) (P=[&] (72)

and

(01 T [ ] 191 = [5] (73)

67
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from app. A, equations (6.157) and (6.158). In addition, it may be noted that the term
-corresponding to rigid-body accelerations and gravity {R} vanishes. This is a consequence

of equation (65), which may be used to write

(0] " [m](6]= o (74)

This last result may be interpreted as an orthogonality of the free vibration mode shapes
{®i}, the columns of [¢], with the columns of [$] when weighted by the mass matrix.
The columns of [@] may be regarded as rigid-body mode shapes, and that term will be
applied in the following in calling [ @] the rigid-body mode shape matrix.

Two obvious advantages have accrued from the transformation. The generalized
stiffness and mass matrices, ['KJ and {m], are both diagonal matrices. Thus, equation

(71) is uncoupied in the left-hand member. If the right-hand member is replaced by a
column matrix of generalized perturbation forces, i.e.,

(@4 =01 {1} o

internal equilibrium in terms of the generalized coordinates expands into 3n-6 scalar
equations as

m, u, +K; u, = Qp1

m, ty + Kyuy = Q)

.

2
(76)

Mg eUsn g " KangUsn-g =

P3n-6

When internal equilibrium is expressed by writing out the equations as they are here, the
advantage gained from the use of the generalized coordinates u; is readily evident. Only one
of them occurs in each of the left-hand members. This is the meaning attached to the term

" “uncoupled.” The only coupling in equations (76) is in the right-hand members. The

generalized perturbation forces Qpi are coupled. In general, each is a function of uj, uj, U
and the motion variables u, v, w, p, q, r and their time rates of change. That dependence will
be discussed later in the subsection regarding aerodynamic derivatives.



Tt is important to note that the motions governed by the internal equilibrium equations
are not moticns relative to an inertial reference frame. The elastic displacements {dp} in
equation (70) and the generalized displacements {u} in equation (76) describe motion
relative to a body axis system. The body axis system may be rotating and accelerating so it
is not, in general, an inertial reference frame. Equations (70) and (76) are not exact
expressions of Newton’s law of mass times acceleration equated to applied force. They are
approximations, unless the center of gravity of the airplane is moving with a constant
translational velocity. The approximation is valid only if the Coriolis and centrifugal
perturbation forces are negligible by comparison with the other forces acting on the airplane
as noted by equations (55).

5.2.4 General equations of ‘motion.— In : preceding subsection the lumped
parameter formulation was used to formulate internal equilibrium for perturbation motion,
equations (62a) and (76). Internal equilibrium for the airplane in its reference motion was
given by equation (63). Also, the perturbation equations of motion for motion of the
airplane as a whole were obtained by analogy with the rigid airplane perturbation equations
of motion. They were given by equaiion (59).

The system of equations listed is complete for the analysis of the stability of an elastic
airplane with two exceptions. The dependence of the aerodynamic and thrust forces on the
airplane’s motion has not been delineated, and equations of motion for the motion of the
airplane as a whole have not been given for the reference motion. Those equations are
obtained from general equations of motion. That derivation is precisely the same as the
derivation for the rigid airplane. Equations (8) and (9), for reference motion of a rigid
airplane, followed directly from the general equations of motion for a rigid airplane,
equations (5) and (6). '

The only distinguisliing feature in the application of these results is obscured at this
point of the development. The aerodynamic and thrust forces and moments depend on the
airplane’s flexibility. If the moments and products of inertia are denoted by the subscript
one to indicate that they are evaluated for the airplane shape under the steady reference
loads, the reference moticn equations of motion may be written immediately as

M(Q1 Wl-R1 V1)=-Mg sin61+FA +FT (77a)
X X
. 1
M R, U -P, W)=Mgcos® sinp +F, +Fp (77b)
N1 Y1
M (P, V, - Q, U;) = Mg cos 91 cos (Dl + FAZ + F,[.z (77¢)
1 1
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-Ile Q1 P +(Izzl- Iyyl) Q1 Rl - MA * MT (77d)

. Xy X,
2 .2 -
Lz, Pr By v Q=1 VPR =M, + My (77e)
1 1 1 ¥y y
1
Ly QB vy - L )P Q =My +My (779)
1 1 1 zy b/
1
and
él =Q, cos (1)1- R, sin (Dl (78a)

(Dl = P1 + (Ql sin (Dl + R1 cos Q)l) tan 91

The methods for finding the reference shape of the airplane cannot be described
without a detailed description of the aerodynamic and thrust terms. That description is the
subject of par. 5.2.5. The problem of computing the reference airplane shape is formulated
in par. §5.2.6.

5.2.5 Aerodynamic derivatives.— Up to this point the aerodynamic forces have been
introduced simply as a consequence of surface stress, and for the lumped parameter
formulation this led to a column matrix of components of mean perturbation aerodynamic
forces {f} The perturbation aerodynamic forces depend on the perturbation motion of
the airplane. It is stated in app. A, equation (6.172), and shown in app. B that the
dependence may be approximated by the expression:

€} =[] 4V} + [Ag] 47, }+ [A.] {ap} + [4,] fdp} +[A] (i} (7o

As noted in app. B, the coefficient matrices may be determined by wind tunnel
measurements. However, theoretical determinations of the matrices in equation (79) are
based on inviscid, small perturbation flow theory. Without entering into the detailed
derivations cf the aerodynamic matrices [Aj] ... [Ags], it is easily shown that equation
(79) is an appropriate form.



Solutions to the inviscid flow problem are in the form of a perturbation velocity
potential that satisfies an equation of flow and appropriate boundary conditions. The form
of the flow equation has no direct impact on the gener;nl form of equation (79). The
boundary conditions consist of the requirements that the flow be tangent to the surface of
the airplane and that cerfain vortex laws be satisfied in the airplane’s wake. As shown in
app. B, the boundary conditions at the surface contain only the perturbation potential (not
its time rate of change), the perturbations to the airplane’s translational and rotational
velocity components, and the elastic displacements and their rates of changs. The wule
boundary condition depends on the frequency of the motion w, but for small frequencies
this dependence may be eliminated by an approximation. Thus, the perturbation velocity
potential ¢ must have parametric deperdence as

®=0x v 2 t{v.} {dp}, {dph (80)

The perturbation pressure at the surface of the airplane is computed from the
perturbation velocity potential using Bernoulli’s equation. That computation involves taking
the first derivative of ¢ with respect to time. Thus, the pressure force at the ith element of
the airplane will have the parametric dependence '

P =P ({V 5 (V) {dph {dp}s {dp}) (81)

Finally, the aerodynamic theory is a linear one and the pressure is normal to the surface,
The linear dependence in equation (79) is therefore justified and the components of the
surface force are proportional to the surface pressure force and the components of a unit
vector normal to the surface in the reference airplane shape.

The aerodynamic derivatives for the airplane are computed from equation (79) by
using the mode shape matrices. The elastic displacements may be replaced by generalized
displacements by using the transformation equation, (64). Thus, the forces and moments
acting at the airplane’s center of gravity are given by
g )

A
X

fa

f . .
A 4 87" [Cay) (v} + [a,] 1)+ (2] BT} + a1 (0110} (o)
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The generalized perturbation aerodynamic forces, Qpi’ appearing in equation (76) are given
by

Q1 =[01" [[a] {vp}+[a] tp}+Lag] 0] {u} + (4,1 (0] (i) 3)
+ a1 (0] (i

An aerodynamic derivative is the rate of change of a component of force or moment
on the airplane due to a change in a motion variable while all other motion variables are held
unchanged. Thus, for example,

m. A
Vi

2

is the acrodynamic derivative. relating pitching moment to rate of change of the second
gencralized elastic coordinate. It is found from equation (82) by setting iy equal to unity
and all other perturbation motion variables to zero. For an airplane represented as n lumped
masses, equations (82) and (83) contain (27n2-18n) aerodynamic derivatives. If there are
100 lumped masses, then there may be 268 200 aerodynamic derivatives.

Those aerodynamic derivatives which relate forces and moments at the airplane’s
center of gravity to motion of the airplane as a whole are contained in the first two terms on
the right of equation (82). These aerodynamic derivatives correspond to those introduced in
the discussion of the rigid airplane and contained in equations (23). This correspondence is
delineated in Sec. 7 of this volume and is developed in detail in app. B.



5.2.6 Airplane reference shape (jig shape determination).— The selection of the design
'shape for an airplane is the result of an optimization process iﬁvolving a large number of
design parameters. When an airplane has a significant amount of structural flexibility,
allowance must be introduced for the difference in the shape of the airplane as it is when
manufactured in fabrication jigs and as it is when subjected to in-flight loads. In the case of
a transport airplane the optimization process usually minimizes the drag of the airplane in
steady, level, midcruise flight subject to constraints such as minimum body diameters and
wing thickness. The result is a design shape that is the optimum shape of the airplane in a
design point flight condition. The design shape may differ significantly from the jig shapé or
the shape of the airplane in off-design point flight conditions. Computation methods for
determining the jig and off-design point shape .re the subject of this section.

The basic relations required for computation of the off-design point and jig shapes of
the airplane have already been developed. Recalling equation (63) and making use of
equation (65), it follows that the elastic displacements in the reference flight condition are
given by )

1y} = -0 {Cm 18] day} +{eyh - {7} 64)

The subscript 1 has been added to the flexibility matrix and the mass matrix to denote that
these matrices are dependent upon the reference flight condition mass distribution.

The values of the elements appearing in the acceleration matrix {a1} and the
gravitational matrix {81} of equatiop (84) are spccified by the reference flight condition.
The aerodynamic and thrust forces {F 1} must be such that the equations of motion for
the reference flight condition, equations (75), are satisfied. They may be written in matrix
form in an analogy with equation (84) as

(8" Cm, 1 (0] G} + 4y =81 T {7, ) (€5)
where

{Fa b *{Fr } = @17 (v} (86)

as noted by equation (40).
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;The reference motion of the airplane is a steady motion. In a steady motion the
aerodynamic equation, equation (79), reduces to 4

°
»
i

{th=[a1{v }+[a,] ap} )

If it is assumed that the aerodynamic forces are linearly related to the motion variables in
the reference motion, then equation (85) may be applied to the reference motion. This is
not always appropriate. Thus, let

{F}= [All {Vy} + [A3] {d;} + [Ac] {6,} + {Ft}l (88)

where a bar has been used on the matrices [A1] and [Aj] to denote that these matrices
may require emi)irical determination or, if detzrmined from potential flow theory, may have
forms that differ from *:ose of their perturbation counterparts. Aerodynamic control
surface deflections have been added as the elements of {6 1} using an influence coefficient
matrix [A¢] to relate them to aerodynamic forces on the lumped masses. Finally, the thrust
forces on the lumped masses have been included as {Fp} 1 with the subscript 1 extericr to
the brackets to distinguish this matrix from the similar matrix appearing in equation (86).

Equations (84), (85), and (88) may be combined to give

(] g} + gy = L8T {3, 34V, + DA J060,} +{mp) -] [E

- 1 __ . -
(€1 a)] [6,] [Eml-] (8] (ay}+{erp -[A,1 {V}-[AT{8;} "T}l]}

(89)

where the definition of the inertia matrix [M] has been used from equation (35). The
coatrol deflections {51} are the only unspecified quantities appearing in equation (89),
with the possible exception of thrust. These quantities must be adjusted so that the six
equations represented by equation (89) are satisfied. This balances the airplane into the
reference flizht condition.



Having balanced the airplane, the deformed shape may be determined. Combining
equations (88) and (84) to find c

-1 _ - -
ey} =-[ [~ (8] [ag]] [6,3{Em, 081 oy} +{eyh) - [R1{Vy)

-[a e} - {FT}I} (90)

all quantities on the right are known from the preceding, so {dl} is determinable.

The airplane in the jig is not subjected to loads, including those due ta gravity. Tiwus,
{dy} vanishes for the jig shape. Letting the quantities on the right be evaluated for the
design flight condition, the displacements {dq} describe the difference in the design and jig
shapes. Off-design point reference motions lead to airplane shapes that are much more
rcadily obtained from the jig shape. The displacements computed from equation (90), when
it is evaluated for the off-design conditions, are simply added to the jig shape.

5.2.7 Perturbation equations of motion.— The perturbation equations of motion were
_ presented in a matrix formulation in par. 5.2.3. They are given by

O] (V) + D 1 {vp} + v Jhe - ) =[0] Gt (59)
P
and

&3 {u} +[a]{i}=[olq) (1)

where the aerodynamic contribution to the right-hand members is given by equations (64)
and (79) as

{8} =41 (vp} + [, (3} «[a 000} + [, J00 4} + [ ]000 fi)

(91)



76

Equations (59) are six in number and equations (71) are 3n-6 in number when n lumped
masses are used to represen the airplane. The stability of the airplane is assessed by
determining the manner in which the variables {Vp} depeqd on time. Thus, equations (59)
and (71) must be integrated to determine {Vp} . That integration rcquires the kinematic
relations given by equations (20), i.e.,

ep = g €0S 61 ~-r sin (I)l (20a)
d)p =p + (r sin (Dl + qcos @) tan o, (20b)

The above system of equations constitutes the equations of motion for a completely
elastic airplane. Because the number of equations and unknowns is very iarge, it is of the
utmost importance, if at all possible, fo reduce the number of equations and unknowns.

One method of simplifying the problem is to use the residual flexibility method. The
frequency of the motion in many of the elastic degrees of freecom is very large. When these
frequencies are an order of magnitude or more larger than the frequencies of the rigid-body
motion, the two motions are only weakly coupled dynamically. However, the elastic
deflections due to those elastic degrees of freedom may strongly affect the rigid-body
motion. The effect is brought about by quasi-static geflection of the airplane structure. The
high frequency of the motion implies that the deflection is very nearly in phase with and in
constant proportion to the loads producirig it. Thus, generalized inertial forces such as mju;
are very small.

Residual flexibility is formulated by partitioning the generalized elastic deflections
{u} into two parts, as

iR
= {{“2.”

The generalized inertial forces associated with {uj} are set to zero. Equation (71) is
partitioned as

1 Mo L Jfi}-[0,17 s} (o2



and
&, o, -[0,]{5} o3

This formulation is discussed in considerable detail in app. A. There it is shown that
equations (92) and (93) may be combined with equations (59) and (91) so as to elimirate
the generalized coordinates {uz} completely. The result is the set of equations governing
the motion of the airplane’s center of gravity as

o (19, b (30,1 {7, }+ ] {ro’p})=

T po -1

[@]. [(11 - [A,] [cR]] [[All {Vp}

+ 1A 1{V }+ [Ag1 10,1 {u; } - [A,] leg bl (o1 {;} (6.208

1) (€ 163 B1({F, b+ (o] (v, } + (o, frs )

LA, l0 140} + (410 1 { i 1}]

and dynamic-elastic equations
_ -1
il iy} + B3 {u, b= 10T 111 - (agh 1o [rap v,
# 1A, 1{V b+ [Ag) (@] {u;} - 1451 (Cp 1tmdlo;]{i}} o
SRS CICARERIVARIURIES) '
p P P

+[A )0, Ha }+ [Asl[q)l,{'u'_l}]

where the matrix (ER] is the residual flexibility matrix. The residual flexibility is given by

[Eg) =1a) - (o) (K17 19,17 (6.203)

It may be noted that fﬁ]] -l is the flexibility associated with the dynamically included
generalized coordinates {uj} . Thus, {ER} is the excess of flexibility of [C] over the
flexibility included in the dynamically included portion of the structural behavior. The term
“residual flexibility is appropriate.

-3

-1
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The formulation presented by equations (6.208) and (6.209) has not been widely used.
An alternate formulation used in some of the evaluations presented in this report has had
prior use. The residual flexibility matrix is also given by

(o Ra1™ (01" - (801 (-md Gy} + 8} - (O LA [BT4R) o
[0, T To,T (- (i +11)

The alternate formulation follows by substituting equation (94) into equations (6.208) and
(6.209). This particular formulation has the disadvantage that all free vibration mode shapes
must be computed with high accuracy. That is not always practical. The result is a less
accurate evaluation of the residual flexibility than is available with the form given by
equation (6.203).

If we introduce generalized coordinates qj with the first six of these set into
correspondence with the elements of the matrix {l'()p} , which appears in the matrix
formulation of the equations of motion, then to the degree of approximation appropriate to
the small perturbation equations of motion

s
and

) T= e ee eeee e

Also, letting {u}T=Lq7, dgr - - - 9]

the equations of motion given by equations (6.208) and (6.209) of app. A may be merged
into a single matrix equation. This equation represents both rigid-body and internal motion
for a residual-flexibility formulation and is given by

(al{d}+ (b1 {q}+ (c] {q}={o} (95)



where

(uvn -@1" (B,17" (A 1) <~ @) (817 (a]) !q)l]) |
[a] = ' L

( lm (8,17 {A 1) ([‘1\711.1— 017 117 A mal]) ]

([M ’\Ix-[@l [B]IIA])([] {A]W)])
[b]=

( [q,‘ [B] Lia ]) (- [0)] [B] [A,] [@11) |

i (lM][le) ( @I" (870 [a,) rol)
[e]l= _ T L=

L (101) (rle - 1017 1817 1) w)l]) |
and [Bl,,[m A l([c]- @1 EK J‘l ®1 )]

By letting I‘RIJ vanish this set of equations reduces to the equations of motion for an
equivalent elastic airplane. If all of the elastic degrees of freedom are included as
dynamically participating, ie., completely elastic airplane, then [Bj] = [I] and these
equations continue to hold. It should be noted the thrust perturbation terms have been
deleted from equations (6.208) and (6.209) of app. A.

When the structural dynamics are neglected entirely, only equations of motion
governing airplane center-of-gravity motion remain. These are called the equatiors of

motion of an equivalent elastic airplane. The resulting expressions are found by replacing
[CR] by [C] in equation (6.208) and setting terms involving uj to zero. The result is

MtVp} [, ] {Vp} - [y ] tx, D) = (0] "0 -Tag1Ce1]™ [Ca o)
+[8,7{9p} (A1 (€] 0] €14V} + [ 2y } + [on,] {rc;p})] (96)
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Some aspects of these various formulations require emphasis. The perturbation
structural deflections for the equivalent elastic airplane gre precisely in phase with the
externally applied loads. This is not the case in the complet‘ely elastic formulation or in the
residual flexibility formulation. The maximum deflection, in general, does not occur at the
instant of time when the external loads are a maximum. Also, the deflections may exceed
the equivalent static-elastic deflections. This is of considerable importance if the structural
motion is strongly coupled with the center-of-gravity motion of the airplane. When it is not,
the problem becomes the concern of the flutter engineer.

1t is of interest to note that the terms on the right of equation (6.208) consisting of
@1 (111 - 14,0 (e 1] [1a, 1 {v Y+ (A )¥ )
3" VR 1°tp 2'17p

contain the stability derivatives that relate change in the forces and moments at the
airplane’s center of gravity to changes in the airplane’s motion as a whole. They are
equivalent to the stability derivatives appeuring in equations (23). If the residual-flexibility
matrix [ER] is set to zero, these terms contain the rigid airplane stability derivatives. If
[ER] is set equal to [C], the total airplane flexibility, so that equations {96) result, they are
the stability derivatives for an equivalent elastic airplane. In that case the terms in equation
(96) consisting of '

T - -1 - — .
- @ [m - [A,] [ch] (Ag) (6 ] Em ] (] ({vp} + (] {vp})
may be included into the equivalent elastic stability derivatives. This is sometimes referred

to as having included inertial relief. The terminology stems from the practice of constructing
equivalent elastic stability derivatives using static-elastic representations of the airplane.



6. STABILITY CRITERIA

Static and dynamic stability criteria are presented artd discussed in this section. The
problem of establishing handling-qualities criteria is beyond the scope of this investigation.
However, physical interpretations of stability criteria and connections with previously
established handling qualities are pointed out.

6.1 Static Stability Criteria

Static stability is defined as the tendency of an airplane to develop forces or moments
that directly oppose an instantaneous disturbance of a motion variable from a steady-state
(i.e., equilibrium or trim state) flight condition. For example, when the nose of an airplane
is raised relative to the flight path and, as a consequence, the airplane develops a nose-down
moment, the airplane is said to be statically stable for such a disturbance.

A static stability criterion is defined as a rule by which steady-state flight conditions
may be categorized as stable, neutrally stable, or unstable.

In other contexts, the words “staiic stability criterion” have been used as a
requirement for an arbitrary minimum static margin. For example, the military specification
for flying qualities (ref. 10, par. 3.3.1.1) requires a negative value of Cma at all times,
which implies a positive static margin.

In still another interpretation, the Civil Airworthiness Requirements (ref. 11, art.
4b.151-155) associate stability criteria with stick-force versus speed behavior.

The reasons for presenting and defining static stability criteria as given are as follows.

1. The definitions of stable, unstable, and neutrally stable given are clear so that
judgment and opinions are eliminrated as factors.

2. These definitions lead directly to important aerodynamic derivatives and show how
they are related to static stability behavior.

The reader will notice that these definitions are largely independent of notions of
stability and stability criteria associated with control force or conirol surface displacement.
Specifically, this report does not deal with:

1. Stick-free stability;

2. Stability as affected by the feel system including bob-weights;

3. Statility augmentation systems in general.

It is recognized that when control surfaces are allowed to float, or when springs or
other devices are added, the longitudina. stability derivatives and associated control
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characteristics can be significantly affected. Such effects are not discussed directly in this
-teport. However, discussions of the effects of the derivatives do apply to those cases.

[
»

The criteria for static stability are summarized in table 1. These criteria are equally
valid for rigid and elastic airplanes. It should be noted that they are presented as expressions
of local slope behavior. For that reason they apply (as a iocal linearization) to situations
where aerodynamic forces behave in a nonlinear manner. This is important because airplanes
do behave in a nonlineer fashion in many instances, for example in stall and pitch-up.

It should also be noted that, although criteria of table 1 evolve from the definition of
static stability criteria used here, they vary considerably in importance. For example,
aMy/ aa(~Cma) is of much greater practical importance than E)Fy/ ov(~ Cyg ). This will
be discussed in more detail in Sec. 7. Notice also from table 1 that under the adopted
definition of static stability, the partials, dM,/du (~Cmu) and aMy/ av (~Cy 8 ), do not
belong. This implies that for static stability under the current definition, the signs of C—mu
and Cp, are not irportant. However, in the practical case these derivatives are important.
An unusual feature of table 1 is that it includes moment derivatives with respect to
rotational velocities. Such derivatives are normally associated with dynamic stability and not
with static stability. The reason for their appearance must be found in the definition of
stati. stability. The physical justification for including these moment derivatives in static
stability considerations is that steady-state flight can actually involve constant rotational
velociiies.

The physical meanings of the criteria are stated below.

Criterion

An airplane is statically stable for a forward speed disturbance, u, if: 9F,/3u<0
N

The physical meaning of this criterion is that as a consequence of an increase in
forward speed, u (along the x-axis), a force must be generated that tends to oppose the
increase in speed.

Criterion

An airplane is statically stable for a side speed disturbance, v, if: aFy/av< 0
(98)




TABLE 1.— SUMMARY OF STATIC STABILITY CRITERIA

General form of
static stability

Approximate or

Importance to handling 4

Reference 10

criterion alternate form qualities MIL-F-8785
oF, st <0 or Needed for stable phugoid. Par. 3.3.6 linits the
au <0 u Not important if throttle phugoid divergence. No
CDu >0 response is good. direct requirement.
(No thrust effect)
oF, CyB <0 Helps pilot in perceiving Pars. 3.4.3 and 3.4.8
— < 0 . . .
the sideslip. All
ov (No thrust effect) t.: sn‘ eslip ows interpreted to mean
skidding turns at low Cy <0
altitude (wings level). 5
oF, CLa>0 Primary means for flight Par. 3.3.3* specifies
ow <0 path control. Significant short period requirements,
to short period. Atways No direct requirement.
- satisifed before stall.
M, Cp >0 Needed to maintain Pars. 3.4.3, 3.4.4, and
oB >0 8 straight flight path, 3.4.5 interpreted to mean
‘ C, >0
"8
aMy Cma <0 Affects time history of Par. 3.3.1 interpreted
<0 .
oa pitch response. to mean Cma< 0
oM, Cyp <0 Affects time history of Par. 3.4.1* specifies Dutch
ap <0 P roll response. Affects roll requirement. Par. 3.4.16
Dutch roll damping. specifies roll performance.
aMy Cp. <0 Affects damping of Par. 3.3.5* specifies short
Eq_ <0 4 " short period (increases period requirements. No
pitch stiffness). direct requirements.
M, Cyp <0 Affects Dutch roll Par. 3.4.1* specifies Dutch
ar <0 ! damping (increases roll requirements. No
yaw stiffness). direct requirements.
aMy Chn >0 Improves speed control. No direct requirement,
3u >0 Y Provides warning of but par. 3.3.3 implies that
inadvertent over or violation s allowed
under speed. Affects transonically,
stick-torce behavior.
M, Cp, <0 Warns pilot of existence Pars. 3.4.3, 3.4.6,and
F <0 g of sideslip. Allows 3.4.7 interpreted to mean

emergency roll control.

_Affects Dutchroll.

C£ﬁ<0

*MIL-F-8785 recognizes auginentation-on and -oft cases. This document deals only with

unaugmented cases,
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TABLE 1.— SUMMARY OF STATIC STABILITY CRITERIA (CONCLUDKD)

i

General form of 4
static stability Approximate or Reference 44 Reference 11
criterion alternate form FAR - Part 25 British CAR, section D
an C. <0or No direct requirement No direct requirement
5:—— <0 xsu
CDu >0
(No thrust effect)
aFy Cy3< 0 Par. 25.177(c) interpreted Par. 7.3 interpreted to
el 0 (No thrust effect) to mean C B<0 mean Cyﬁ <0
8F, CL >0 No direct requirement No direct requireinent
— <0 a
aw
M, G >0 Par. 25.17(a) interpreted Par. 7.2 interpreted to
Y B 0 8 to mean Cnﬂ >0 mean CnB >0
BMy Cma <0 No direct requirement but Par. 2.1 requires
3@ <0 Pars. 25.173 & 25.175 dem _, os
interpreted to mean Cma<0 dC
M, Cp <0 No direct requirement No direct requirement
—_ <0 p
9p
' aMy Cp <0 No direct requirement, but No direct requirement, but
3;— <0 q Par. 25.181 requires all Par. 8.1 requires all short
short periods to be heavily periods to be heavily
damped damped
M, ) C, <0 No direct requirement, but No direct requirzment, but
n <0 r Par. 25.181 requires all Par. 8.1 requires all short
. short periods to be heavily short periods to be heavily
damped damped
aMy Cpn >0 Par, 25.175 (c) implies that Par. 31.2 implies that
ET >0 u violation is not allowed violation is not allowed
M, Cp, <0 L Par, 25.177 (b) interpreted Par. 7.1 interpreted to
<0 8 tomeanCyp < 0 C 0
3 13 mean Cp 3 <
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The physical meaning of this criterion is that as a consequence of a side speed
disturbance, v (along the y-axis), a force is generated “that tends to oppcse v. The
approximation, v= 8 Vcl will be used.

Criterion

An airplane is statically stable for a vertical speed disturbance, w, if: oF ,/ow<0
' (99)

The physical meaning of this criterion is that as a conscquence of a positive velocity
disturbance, w (along the z-axis), a force is generated that tends to oppose w. The

approximation w= ¢ Ve, will be used.

Criterion

An airplane is statically (directionally) stable for a sideslip disturbance, 8, if:
M, /08>0 (1€0)

The physical meaning of this criterion is that as a result of an angle of sideslip
disturbance, 3 , the airplane weathercocks into the new relative wind.

Criterion

An airplane is statically (longitudinally) stable for an angle-of-attack disturbance,a,
if: 8My/801<0 (101)

The physical significance of this criterion is that as a result of an angle-of-attack
disturbance, &, the airplane weathercocks into the new relative wind.

Lo o)
it}
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Criterion

[ ]
>

An airplane is statically stable for a disturbance in roll velocity, p, if: BMX/8p< 0
(102)

The physical meaning of this criterion is that as a result of an increase in rolling
velocity, p, a moment is generated that tends to oppose the increase in rolling velocity.

Criterion
An airplane is statically stable for a disturbance in pitching velocity q, if:
8My/aq< 0 (103)

The physical meaning of this criterion is that as a result of an increase in pitching
velocity, q, a moment is generated that tends to oppose the increase in pitching velocity.

Criterizn

An airplane is statically stable for a disturbance in yawing velocity r, if:
M, /or<0 (104)

Tne physical meaning of this criterion is that as a result of an increase in yawing
velocity, r, a moment is generated that tends to oppose the increase in yawing velccity.

Under the definition of static statility used in this report, the partial differential
dMy/du (~Cmu) does not qualify as a static stability parameter. However, as will be
shown, Cmu has important consequences to longitudinal stability from the viewpoint of the
pilot. In addition, in much of the literature, this parameter is identified with longitudinal
stability.



It is noted that a positive sign of aMy/ du means physically that as a result of an
.increase in forward speed, the airplane noses up, which would tend to slow the airpiane
down because of the resulting drag increase plus the increase in giavitational pull a'ong the
body x-axis. Therefore, an airplane would have stable pitch moment versus speed behavior
if: 8My/8u> 0.

%

Under the definition of static stability used in this report, the partial differential
aMx/av (~ Cz B) does not qualify as a static stability parameter. Nevertheless, this
derivative has an important effect on stability and on handling qualities.

The physical significance of this is that for a positive sideslip disturbance (nose left) the
airplane tends to roll away from the disturbance, i.e., roll to the left. If the airplane rolls
about its stability x-axis as a result of this, it is easily seen that this tends to diminish the
effective sideslip angle. For this reason, some investigators identify Cg , as a lateral stability
parameter even though strictly speaking the derivative should not be considered as such.

6.2 Dynamic C:ability Criteria

Dynamic stability is defined as the tendency of the amplitudes of the perturbed
~motien of an airplane to decrease to zero or to values corresnonding to a new steady state at
some time after the disturbance has stopped. For example, consider an airplane disturbed in
pitch from a steady-state flight condition. If the resulting perturbed motion is damped out
after some time, the airplane’s motion becomes steady. If the new state is not significantly
different from the original one, the airplane is called dynamically stable. The subject of
dynamic stability, then. deals with the behavior of the perturbed motion of an airplane
about some steady-state flight path.

A dynamic stability criterion is defined as a rule vy which perturbe:d motions arc
categorized as stable, neutrally stable, or unstable.

In other contexts a dynamic stability criterion has been interpreted as a requirement
for specific response characteristics or for meeting specific frequency-damping relatjons.
This type of interpretation is embodied in the military specification for flying qualities (ref.
10) and its proposed revision as documented in ref. 12. There are important connections
between dynamic stability criteria (viewed as mathematical statements of stability) and the
handling-qualities criteria of refs. 10 and 12. Therefore, where the need for physical
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interpretation of the stability criteria is established in this report, the connections with
handling qualities are pointed out. '

" Dynamic stability criteria are established covering the linear and nonlinear equations of
motion of an airplane. These criteria apply to rigid, equivalent elastic, and completely elastic
descriptions of airplanes provided the corresponding equations of motion are written in the
form pertinent to the criteria. Table 2 presents a summary of dynamic stability criteria and
their relationships to the various forms of the equations of moiion. The arrangement of the
gquations of motion into the required forms was discussed in Sec. 5. Those combinations of
criteria and equations which are most commonly used in airplane stability analysis are
identified in table 2 -ith heavy lines.

6.2.1 Characteristic equation methods.— When airplane dynamic behavior can be
approximated by assuming that motion perturbations relative to a steady state are small, it
is possible to reduce the equations of motion to a set of linear, second-order, ordinary
differential equations vith constant coefficients. It is shown in app. A that in such a case
these equations can be reduced to the following general form:

{x}=1aNx} (105)

Taking the Laplace transformation and rearranging equation (105), it follows that

[ts] - ta1] feg @} = {x, (tj)} (106)

where:
1.S= o % jw=complex frequency variabic
2. The subscripts s and t are used to distinguish between the functional relationships
{Xs} and {X;}

The quantities oj and w j are, respectively, the real and the imaginary parts of the roots
§j of the characteristic equation:

Ils]-talll=o0 (107)
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Equation (107) follows from the condition that nontrivial solutions  ({ X(S)} = 0)
to equation (106) for {Xy(t,H)} =0 are allowed only if equation (107) is satisfied.

The following dynamic stability criterion can then be fdrmulated.

Criterion

If the airplane equations of motion are linear and autonomous, then the airplane
behavior is sa_i:d to be:

e stable, if the real parts of the roots of the characteristic equation are all negative,

e neutrally stable, if there are one or more roots of the characteristic equation with
zero real parts and the remaining roots all have negative real parts, and

e unstable, if there is at least one root of the characteristic equation with a positive

real part.
(108)

In most of the standard literature (refs. 4 and 13 through 17), dynamic stability of
airplanes is treated from this viewpoint.

The possibility exists for A in equation (105) to have elements thai we known
functions of time. This occurs in steady climbs and dives when dynamic pressure is allowed
to vary. In such a case, equation (105) is still linear but is called nonautonomous, and the
equations assume the form:

{x}=1A®)] {x} (109)

For this type of equation, no simple stability theory is known. (The more complicated
stability theory of Lyapunov, which is discussed in par. 6.2.4 and in app. A, could be used.)
However, the writers of this report feel that equation (109) is valid, although no proof has
been found justifying the approach. The approach consists of applying the characteristic
equation method to equation (109) with the following modifications. The characteristic
equation considered is:

haw] -afilli=o (110)



The following dynamic stability criterion is postulated.

q°

Criterion

When the real parts of the roots of the characteristic equation, equation (1 10), are
negative for ¢ = 0, as well as for t = t, where t is the practical limit of the time
interval considered, then the airplane is stable in that time interval.

(111

As stated, this criterion needs proof. The proof may lie in defining the quantity E as
equal to the total kinetic energy of the airplane in the perturbed state and also defining E=
dE/dt. In that case, E takes the place of the Lyapunov function. If criterion (111) is
satisfied it can be interpreted to mean, according to Lyapunov’s thecrem 1, that E is
negative at the beginning and end of the time interval.

Whether or not in a practical case the dynamic stability criteria (108) are satisfied can
be determined by solving directly for the roots of the characteristic equation. A technique
for determining stability behavior from the characteristic equation without solving for the
roots is known as Routh’s criterion. The reader is cautioned not to confuse this with what is
sometimes called the Routh-Hurwitz criterion. Routh and ‘Hurwitz both developed similar,
but not identical, criteria. However, from the standpoint of calculations Routh’s is the more
direct approach and is discussed in app. A.

There are many techniques used in systems, analyses, and synthesis techziques (control
theory) that may be applied to the perturbed airplane equations of motion of the form of
equation (105). Some of the more widely used, for example Bode diagrams, Nichol’s charts,
the Nyquist criterion, root locus plots, phase trajectories, etc., can be found in the literature
(for example, refs. 18 through 22). Most of these techniques were generated for special
types of problems and their use is restricted because of limitations imposed by the number
of assumptions and/or the effort required in their application.

Applications of the characteristic equations method are limited to linear differential
equations of motion; they cannot be used where significant nonlinearities are encountered.
However, when the equations of motion can be linearized, the characteristic equations
method represented by criferion (108) is a most efficient technique for determining airplane
stability behavior. In addition to determining the stability behavior, the roots of the
characteristic equat’,as can be used for other analyses. For example, the frequency and
damping characteristics, imaginary and real parts of the roots, are used c.tensively in
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handling-qualities analyses and stability augmentation systenis design. Examples of such uses

may be found in refs. 4, 10, and 12 through 17.

6.2.2 Time histories.— When the equations of motion of an airplane cannot be
linearized, it has been common practice to base judgment of stability behavior on
observation of traces of time history solutions of the equitions of motion.

The resulting traces are judged to determine stability.

Criterion

When the motions of an airplane following a disturbance from steady-state flight are
determined by a time history, the behavior is:

—_

o stable, if ir° motions remain in proximity to the steady state,

e neutrally stable, if the motions are undamped and oscillatory about some steady
state,

@ unstable, if the motions diverge from the steady state either linearly, exponentially,
oscillatorily, or in any combination.

(112)

1t should be recognized, however, that for nonlinear equations of motion there may be
combinations of locally stable, neutrally stable, or unstable regimes. An example of what
can be encountered is airplane pitchup above a certain angle of attack. If motions were
investigated for small angles (caused by a small initial disturbance), stable motion would be
observed. However, if a large disturbance were introduced which would force the angle of
attack above the pitchup angle, divergence would occur. It is easily realized that one stable
case does not guarantee airplane stability throughout its operating limits. Practically, this
problem is resolved by running several time histories with various disturbance magnitudes.

6.2.3 Energy decay methods.— A relatively new and unknown type of stability
anaiysis is the energy decay method, which is discussed in refs. 23 and 24. The fundamental
idea behind energy decay methods is that in dynamically stable systems, energy is being
dissipated. In the case of linear differential equations with constant coefficients, it is
possible to show the inverse, i.e., that if energy is being dissipated the corresponding system
is dynamically stable. Extension to nonlinear equations of motion can be justified by




applying the Lyapunov stability theory discussed in app. A. The approach can be stated in
the following steps.
1. Derive expressions for the total perturbed energy, E, of the airplane.
2. From (1) derive the AE required to make the airplgne appear to be a conservative
system in the first half cycle of oscillation, i.e., neutrally stable.
3. Examine the sign of AE.

The following dynamic stability critericn can then be formulated.

Criterion
If: AE>0, the airplane is stable.
AE = 0, the airplane is neutrally stable or undisturbed.

AE<Q, the airplanc is stable.
) (113)

A theoretizal discussion on how to apply this criterion is given in ref. 24. However,
because of algebraic complexities it is not considered practical to use the above criterion in
cases involving nonlinear equations of motion. For these cases, Hahn (ref. 25) suggests an
energy decay method based on an idea by Lebedev. This idea was further developed by

Roskam (ref. 23). There, stability was connected with energy decay through the parameter:

[
T dt

t
O S
/[*

T dt
tl

.where T is the perturbed kinetic energy, t| is the beginning of a time interval during which
the motion of the airplane is being studied, t3 is the end of that time interval, and t; is the
midpoint of that time interval. The criterion for stability in this case follows.

(114)

Criterion

If: F< i, the airplane ié As;table.
F = 1, the airplane is neutrally stable.

F>1, the zirplane is unstable. (115)
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It is shown in ref. 23 that the condition F< 1, indicating stability, is satisfied in the
case of stable, linear, small perturbation equations of motion.

»

: ¥

The advantage of the latter criterion is that it applies to nonlinear equations of motion.
A disadvantage is that either considerable numerical work or a computer program is
required.

Because energy decay methods have not been widely applied, their limitations,
advantages, and disadvantages have not been assessed, although it is felt that there should be
few limitations because of the general nature of the approach. However, for linear,
autonomous, small perturbation equations of motion, this approach will probably prove to
be less efficient than the characteristic equations method.

6.2.4 Lyapuiiov’s method.— The time history method was suggested as a way to
determine the stability behavior of an airplane when the equations of motion are nonlinear.
However, with the time history method it is necessary to solve the equations of motion.
Lyapunov has devised a stability theory for both linear and nonlinear differential equations
of perturbed motion that obviates the necessity to solve these equations.

Lyapunov’s stability theory has received little attention from airplane stability and
control engineers. For this reason, an introduction to this theory as well as some pertinent
definitions and theorems are given in app. A. The potential applications of the analysis
techniques devised by Lyapunov, and by others who have followed his approach, are quite
numerous becuase of the generality of the approach. Rather than solving any particular
problem, Lyapunov realized that the stability of dynamic systems (including moving bodies)
was a problem of studying the behavior of differential equations in general. He devised two
classes of approach, one for equations whose solutions are known functions of time and
another for equations of motion written in the perturbation form. The first approach, using
known solutions, is similar to the use of the stability criterion for time histories.

The second approach, called the “direct” or “second” method of Lyapunov, requires
choosing a “Lyapunov function’ and relating the behavior of this function to the behavior
of the differential equations of motion. Owing to a theorem attributed to Zubov,
Lyapunov’s direct method becomes a particularly attractive approach to the problem of
nonlinear airplane stability behavior. Because of its similarity to the more familiar
characteristic equation approach it is felt that Zubov’s theorem should appear as a logical
extension of that approach, In fact, as shown in app. A, it is possible to prove criterion
(108) (stable roots for characteristic equations) using Zubov’s thcorem for linear,



autonomous equations. However, the application of Zubov’s theorem would be more useful
for nonlinear equations.

The large perturbation equations of motion of an airplane can be written in the form:

{x}=1F {x}, t)1{x} (116)

Also, nonlinear, small perturbation equations with nonlir -ar, aerodynamic, cross-coupling
terms, can be written in this form, Before stating the stability criterion for these nonlinear
equations, however, some definitions are required. First, the equation

llé [[F =g} tR)]T+ [F (=g}, tR)]] -afidll=o0 (117)

will be called the “quasi-characteristic equation” where {xgr} and tp are defined as values
belonging to a representative set of x and t. Next, by a “representative set,” the following is
meant. For given initial disturbances, the solutions to the equations of motion (116) yield a
time sequence of values of the motion variables {x} . In most practical cases the engineer
will have an idea of the practical limits of the perturbed motions the airplane can
experience. In other words, the engineer can make a reasonable estimate of the “cylindrical
neighborhood” surrounding the time axis, within which the motion takes place. Choosing
discrete values of {x} and t, called {xgR} and tg, within practical limits related to the
steady-state flight condition in accordance with these ideas, generates a representative set of
{x} and t. Analogous to this choice of a representative set is the selection of combinations
of Mach numbers, dynamic pressures, angles of attack and angles of sideslip for which wind
tunnel data is to be obtained or stability is to be assessed in the usual analytical approach.

Finally, the eigenvalues, A , that will satisfy equation (117) are called the eigenvalues of
the quasi-characteristic equation.

Using the above definitions, the application of Zubov’s theorem as a dynamic stability
criterion is postulated as follows.

Criterion

If the eigenvalues of the quasi-characteristic equation are nonpositive (s 0) for each
{XR} and tp, in a representative set of {x} and t, then the airplane is stable.
(118)
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Unlike the other stability criteria presented in this section, this criterion has no neutral
or unstable counterparts. It is shown in app. A that Lyapunov’s direct method has certain
limitations and that the existence of positive eigenvaluts does not necessarily imply
instability. In other words, criterion (118) is necessary but not sufficient.

It is emphasized that the use of Zubov’s theorem as a basis for determining stability has
limitations and disadvantages. Particularly important is the consideration that proving
Zubov’s theorem requires the use of a particular Lyapunov function, which may lead to very
rough stability analyses. Another disadvantage is loss of physical feel for the problem until
familiarity with and understanding of the direct method are achieved. Where the engineer
can visualize the predicted motions, the fime history approach has a distinct advantage.

The particular method presented here, using Zubov’s theorem, has no restrictions on
the types of perturbation equations to which it can be applied. However, the criterion only
pertains to dynamic stability and, as stated above, there are no neutral or unstable
counterparts. Also, it will not always predict stability for stable airplanes. This approach has
not been sufficiently explored to adequately assess its value.



7. METHODS FOR DETERMINING STABILITY DERIVATIVES

%
7.1 General Considerations

Aerodynamic derivatives are used to relate changes in the aerodynamic forces and
moments to changes in the airplane’s attitude, motion, and shape due to elastic deformation
and control deflections. Those derivatives associated with airplane translation and rotation
are generally called the airplane’s stability derivatives. Here, those associated with elastic
deformation are also included in that classification.

The stability derivatives must be estimated in order to evaluate the stability
characteristics of an airplane configuration. Several methods for obtaining_estimates are
usually used in combination. These methods divide roughly into three categories: (1)
estimates based on numerical solutions to the equations of fluid dynamics, (2) estimates
based on semi-empirical handbook data, and (3) estimates based on experimental wind
tunnel data. The objective here is to describe the best available analytical techniques. These
techniques are then evaluated by comparing computed values for stability derivatives with
their values measured in wind tunnel and flight tests and by~ carefully investigating the
approximations involved in the theoretical and handbook methods.

There are 24 stability derivatives associated with the translationa! and rotational
degrees of freedom that are usually regarded to have some importance to the stability
characteristics of large, flexible airplanes. They are listed in table 3 along with an evaluation
of their relative importance. The degi:e of confidence that can be placed on their predicted
values when wind tunnel measurements are used in conjunction with handbook and
theoretical techniques is also shown. This table reflects a consensus existing among
experienced stability and control engineers at the time of writing. It illustrates the need for
improved techniques for estimating lateral-directional stability derivatives.

The advent of large digital computers has greatly enhanced the theoretical approach to
estimating stability derivatives. One conclusion of thic study is that digital computer
programs based on solutions to the equations of fluid dynamics constitute the best method
for estimating stability derivatives. These programs can incorporate empirical corrections in
somewhat the same manner as the handbook methods. They can also use data from wind
tunnel pressure models and the results of flow visualization studies as empirical corrections
in a way that is impossible in the current handbook methods.

The computer programs generally use influence coefficient theory. Aeradynamic
influence coefficients give the change in pressure at a small region of the airplane’s surface
due to a change in surface incidence at that and any other small region of the airplane’s
surface. Structural influence coefficients give the change in incidence and position at a small
region due to a change in force applied to that and any other region.
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TABLE 3.~ RELATIVE IMPORTANCE AND PREDICTION ACCURACY OF

STABILITY DERIVATIVES v
Longitudinal Lateral-directional
L Relative Estimated L Relative Estimated
Derivative ) Derivative .
importance | accuracy* importance accuracy#
CLa Primary Good Cq 3 Primary Good
Cma Primary Good Cy 3 Primary Good
Cmq Primarv Good C 1 Primary . Good
Cmu . Primary Good Cnr Primary Fair
Cm& Primary Fair Cy Primary Poor
P
C Primary Good Cp Primary Poor
D, 5 .
CDoz Secondary Good CYB Prima.y Good
CLu Secondary Good CYp Secondary Poor
CL & Secondary Poor Cn 5 Secondary Poor
CL q Secondary Good CYr Secondary Fair
CD& Minor Poor Cy B Minor Poor
CDq Minor Fair Cy 13 Minor Poor
|

*Estimated prediction accuracy assumes use of theoretical, handbook, and
wind tunnel data.




The influence coefficients can be used in a formu'tion of the stability derivatives for a
rigid airplane, an equivalent clastic airplane, or for the elastic degrees of freedcm of an
airplane represented as completely elastic. The aerodynamig, influence coefficients are based
on either liiting surface theory or lifting line theory, althoflgh lifting surface theory is the
more general and is not restricted in application to high aspect ratio wings s is lifting line
theory.

As noted, th. aerodynamic influence coefficients can either be combined with the
structural influence coefficients to formulate equivalent elastic stability derivatives or be
used by themselves to formulate rigid stability derivatives. The ratio of these two stability
derivatives or the difference between them can then be used to correct handbook estimates
of rigid stability derivatives for the effects of elasticity. These procedures can also be used t>
correct derivatives measured in the wind tunnel using rigid or nearly rigid models. [t
represents the best available method for correcting rigid stabii:-v derivatives.

The most widely known source of information for estimating stability derivatives is the
USAF Stability and Control Handbook (ref. 6). It was the primary handbook source used in
the evaluation. This handbook, as well as all others, utilizes empirical and theoretical dota
determined over a range of certain parameters associated with airplane configrration, e.g.,
aspect ratio and tail volume, and with the airplane reference flight condition. The stability
derivatives of a particular airplane are found by interpolation of the handbook data.

A serious deficiency in the handbock is that the effects of structural flexibility are
either not accounted for or are accounted for ohly through coarse approximations. The
handbook methods are not sufficient in themselves to treat flexible, low aspect ratio wing
and tail surfaces.

Tables 4 and 5 summarize the results of the evaluation of methods for calculating
stability derivatives. The estimates based or. _‘ting line theory |\ >f. 26) contain empirical
corrections and were made using a computer program that is typical of those available
throughout the industry. Those based on lifting surface theory (ref. 27), however, were
made without empirical corrections, It is important to rote this because the lifting surface
technique used in this evaluation was developed for wing optimization studies. Leading edge
suction is poorly represented in this program; hence, induced drag and yaw due to roll are
poorly estimated. The program will only represent an airplane in symmetric flight or a flat
airplane in roll. In addition, a first approximation to derivatives that involve unsteady
aerodynamics is not an immediately accessible feature. Ail of these aspects reflect against
the lifting surface estimates, although they may be overcome in future programs.

Te"les 6, 7, and 8 summarize the limits of applicability ot the techniques for obtaining
stability derivative estimates. Tabls 6 and 7 show the applicability of techniques using
aerodynamic influence cocfficients—table 6 concerns techniques based on lifting surface

theory and table 7 those based on lifting line theory. The applicability of handbook
methods is shown in table 8.
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TABLE 4.— LONGITUDINAL STABILITY DERIVATIVES

Lifting Lifting Handbook Handbook +
surface line lifting
(comp_uter,- (computer) surface
Derivative
Rigid and Rigid and
equiv. elas. equiv, elas. Rigid only Equiv. elas.
“Sub Sup Sub Sup Sub Sup Sub Sup
707 { SST|SST | 707 | SST {SST | 707 | SST | SST } 707 | SST | SST
Cp, [e|e|P|P]|eP P| P
e | ¢, |Flc|c|c]|a G|PlGc|G|p|P
Cmy |G| P |F|F|F Plp |G P
C
D& P P P
: C
a L& P P P
C
mg, P P P
Cp, {p|P|P
u 1 ¢, |c|G|c PP [P
“m, {¢|6|c
C
Dq P|P | P
q CLq F|F|F P{Pi{e|P]|P]|P
Cmy |F|F|F P{P|P|P|P]| P

G (good)—method compares favorably with experiment, with some exceptions.

F (fair)-method compares favorably with experiment, with exception of some
M, A LE » Stc.

P (poor)—method does not compare favorably with experiment.

[BLANK] ;—not calculated.



TABLE 5.— LATERAL-DIRECTIONAL STABILITY DERIVATIVES

Lifting surface

Lifting. line

Handbook +

(computer) (computer) Hangbook lifting surface
Derivative Rigid and Rigid and ‘
equiv. elas. equiv. elas. Rigid only equiv. elas.
Sub Super Sub Super Sub Super Sub Super
707 { SST | SST {707{SST| SST |707 {SST| SST |707 |SST | SST
Cyp F|F| F
B | Cag PIP| P
Cag P|F| P -
Cyz PlP]| P
B | Cep P |{P| P
Cnp PP | P
Cy, PP PlpP| P
p {C2, |F|{F | F |F|F P | P P|P| P
Cnp P|P PP | P
Cy, PP | P
r | Ce PP} P
Cn, P|P| P

G (good)—method compares favorably with experiment, with some exceptions,
F (fair)~method compares favorably with experiment, with exception of some
M,.A.LE, etc.
P (poor)—method does not compare favorabl; with experiment.
[BLANK] —not calculated. '
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TABLE 6.— APPLICABILITY AND LIMITATIONS OF LIFTING SURFACE THEORY

~ Thir-body
t}fﬁ:ﬁ‘;izt;ggb Non-coplanar, thick-body formulation
6<< T, bf2
Deriva- Non- . . Wing-body| wine+tail
tive Wing Wing-body| coplanar Tl}nck —}}1 !:;k Horiz-tail dlir;lz dr::l
surfaces | Surtaces 04y | vert, tail
T T T T T T ,‘
SIR[SIS|[R|S|S|JR|{S}S|R[SIS|IR|{S{S|R|SIS|R}|S
UjAJUJUJA|U|JUJA|UJUJAJU[UJAJUJUJAJUJU[A|U
BINIP{B|N|P|B{N|P|B|N|P|IB{N|{P|B|[N[P|B|N|P
Cp,
(]
aCLaoo'oooo ole eie ol e o N|IN|N
Cmnz
. |SDa
o CL& ° sie o2 ?21e ole i NIN|N
Cm&
Cby
u |CLy| e ele el ole ole o e e[ N|IN| N
Cmy
Chq
q%qu ole ole s le ®| 9 219 ?2IN|IN|N
m
q
CYB
B ng ? ?2}? 212 ?71°? 21?2 ?21? ?212 ?
.Cnﬁ r
Cys
. B
Copl ? 2|2 ?
Blck
i
CYp-
p Cfp ° ale ole o|e .
Ch p
CYr
r (Cerl2| |2]2| |°
Cne
Ability to calculate various flow conditions ° Capability exists or can be
Flow Capability developed from existing theory.
Compressible Yos N Not applicable to first-order
Steady Yes ____ approximations of this derivative.
Quasi-steady Yes Blank  No capability exists.
Unsteady Yes ? Capability may exist, but further
Viscous No development is required.
Separated No ‘




TABLE 7.— APPLICABILITY AND LIMITATIONS OF LIFTING LINE THEORY

. Non- ing-
Wing-body copcl):nar “l’l‘“t‘? b:)clily Wing-tail | Thick Thick
horiz. tail Orz-talt - dihedral bod
Deriva- sv-faces | vert. tail | surfaces Y
tive T T T T T T T
SIR|IS|S|R|S|S|R[S|S|IR|S{S|R|S|S|R|{S}S|[R}S
U|JA[UJUJA|U|JUIA|JU|JUIA|U|JU|A|UjJU|A|[U|JUJA| U
BIN[PI{B{N|P|{B[N|P|B{N|P|B|[N{PIB|N{P|B|[N|P
CDoz
o CLa . . ° NIN|N
Cmd
. s
a |Cy: . . N|N|N
Cma '
Cpy
u CLu ° ' ° NIN|N
Cmu
CDq
qa {Crqle . ? N|N|N
Cmq
Cvg
BICI3 | e . ? ?
C, 8
. 163
B ICe5] 2 ? ?
CnB~
Cy
P Cz{i ? ? ?
Cnp
Cy
r Cglr. 2 ?
Cnr
Ability to calculate various flow conditions o Capability exists or can be
Tlow Capability developed.from exxs.tmg theory.
N Not applicable to first order
i approximations of this derivative,
Compressible Yes . .
Stead v Blank No capability exists.
ca .y es ? Capability may exist, but further
Quasi-steady Yes . .
development is required.
Unsteady Yes
Viscous No
Separated No
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TABLE 8.—APPLICABILITY AND LIMITATIONS OF THE HANDBOOK METHODS

Non-
. . °™ | Thick | Thick | W-B-Ht | Wing-tail
Wing {Wing-body| coplinar ) o
. surfaces body vert. tail | dihedral
Deriva- surfzces v
tive T T T T T T T
SIR|{SIS(R|S{S|R|{S|S|R{S|{S|[R|S|[S|R|S|S|R|S
UIA|JUJUJA|{UJU|A|{U|UJA|U|U|JA|JUJU|A|UJUJA| U
BINIPIBIN|P|B|{N|P|B|NIP|BINIPI|BINIP|BINI|P
CDa
agLaooooooooooooooooooNNN
Mgy
D4, of |o i
& CL& eje] e ° eje e8I NININ
Cm& . o (e @ sje|o oo ]e
C
Dy
u {Cp, ‘IN{N|N
Cmu
C
cPa
q a e je ° e oo |0 e INININ
g . ) ) ° ° ejele e
Cy
C.B
B !ﬂ [ J ol e ® | [ ] L ] [ ] ® eo|e [ ] [ ] [ N ] [ N [ ] [ ® [ ]
C, p
Cuve
S ¢
B Cﬁg e[oejo]ele o e
C, 5
Cy 2
C p
P Clp o oo e|loe IERK] L B
np @
C ? 2
CYr he .
r gr . o|eo|e ejo|e]e .
Cny . HARE
Ability to calculate various flow conditions ° Capability exists OT Cfm be
— developed from existing theory.
Flow Capability N Not applicable to first order
- approximations of this
Compressible Yes derivative.
Stead.y d Yes Blank  No capability exists.
Sua:bs(tiea y ‘;’es ? Capability may exist, but
fls cacdy es futther development is required,
Viscous No
Separated No




The. preference foi_lifting surface theory expressed in this report is heavily supported
by the results presented in these tables. Three classes of capability are shown. That which
exists or can be acquired readily is shown by a dot. Thaf which is within the fundamental
limitations of the technique is shown by a question mark. A blank space indicates capability
which exceeds fundamental limitations of the technique.

Estimation techniques using lifting surface theory clearly have the greatest basic
potential. When this theoretical capability is coupled with empirical corrections to the
lifting surface technique, the preference is further justified. Empirical correction methods
may be utilized in the aerodynamic influence coefficient methods in a very efficient and
rational manner. This feature has been incorporated into existing computer programs based
an lifting line theory but is currently in only a rudimentary stage of development in existing
programs based on lifting surface theory.

The formulation of stability derivatives in terms of aerodynamic influence coefficients
involves the theory of small perturbation inviscid fluid flow. A general formulation of the
aerodynamics of stability and control based on a mathematical theory of fluid dynamics
appears nowhere in the literature. Many specialized investigations may be found, and
examples appear in the works by Miles (ref. 28), Chester (ref. 29), Ward (ref. 30), and Van
Byke (ref. 31). The only general development found in the literature is that by Bryson (ref.
32), which applies to slender rigid bodies. However, Bryson’s development is valid for
slender bodies only, to the exclusion of wing-body combinations with aspect ratios larger
than 2 or 3, since his formulation is based on the constant-density, cross-flow assumption.

It is also important to note that the assumptions applied to the conservation laws of
ref. 33 to develop the inviscid fluid dynamic equations do not apply to hypersonic flow.
Precise limits of applicability cannot be placed upon these equations, because the onset of
hypersonic flow depends up'on the shape of the body (ref. 34). Hypersonic flow
characteristics are observed at M, = 3.0 on some blunt bodies, but not until M = 10.0 on
some thin bodies. For supersonic jet-type airplanes, which are relatively slender, important
hypersonic {lTow effects do not occur below Ms = 5.0. Therefore, the flow equations used in
this report are assumed valid up to that speed for such slender configurations.

A formulation of the stability derivatives in terms of lifting surface aerodynamic
influence coefficients is presented in par. 7.2. The basis for that formulation is described in
physical terms in par. 7.2 and is developed in detail in app. B. Summarizing, the pertinent
equations for the stability derivatives are written in terms of five aerodynamic matrices,
(A, [A21 » [Az], [A4] , and [AS] , which are derived from the equations of fluid
dynainics as described briefly in par. 7.2 and in detail in app. B. Their precise form depends,
‘1 pan, on the particular aerodynamic influence coefficient theory chosen. The equations in
lerr, 5 the aerodynamic matrices are as follows.

105



106

c c C .
D_ D, Dy
C C c -«
Vg . Yp Y,
o C
L L, L, N
C C C ={e] [A,]
2 L 2, 1 (119)
u a q
C C C
L ng n, n,
. o 3
B
Cy
B
C
Ly | =0T (a,] 120
CO. ( )
nld
C
| 5 ]

The derivatives contained in the boxes above are lateral-directional; the rest are
longitudinal. The aerodynamic influence coefficients cannot be used to compute drag due to
viscous forces. However, those drag derivatives which are for the most part due to
nonviscous forces can be computed. The values of CDu’ Cp o’ and Cp can be computed
for use in obtaining elastic corrections to rigid values obtained separate(lly from a computer
program system.

Equations (119) and (120) contain certain approximations of the aerodynamic forces
in order to be consistent with the small perturbation equations of motion. The
lateral-directional unsteady derivatives C ¢, C 15+ Chs contain the most severe approxi-
mations and assumptions. The longitudinal steady derivatives ar~=aring in equation (119)
contain the least severe approximations. Besides those assumptions previously listed in
deriving the small perturbation equations of motion, assumptions and @,ure



applied in calculating the longitudinal stability derivatives. The evaluation of the
lateral-directional stability derivatives depends upon @ . Unsteady stability derivatives
are based on approximation @ in lieu of .
2
Additional stability derivatives are required which correspond to aerodynamic forces
generated by the dynamic-elastic motion, i.e., motion in the elastic degrees of freedom.
Stability derivatives corresponding to the ith elastic degree of freedom are

= (31" (A, {0} T2y

A=)

=

1T1A,) (9] (122)
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= 1617 (a1 {o,} (123)

where {9} is the ith elastic free vibration modal shape.

The derivatives appearing in boxes are lateral-directional and are nonzero if i
corresponds to an antisymmetric mode shape and zero if i corresponds to a symmetrical
mode shape. The remaining derivatives are longitudinal and are zero or nonZero conversely

with tiie lateral-directional derivatives.

Stability derivatives for changes in generalized aerodynamic forces in the elastic degrees
of freedom due to changes in the motion velocity components are given by

- + T

g
(129)

IR P

Stability derivatives for changes in generalized aerodynamic forces due to rates of
change in incidence and sideslip are:

T

={¢j}T (A,] (125)

Stability derivatives relating changes in generalized aerodynamic forces to changes in the
generalized coordinates and velocities in the elastic degrees of freedom are:



{cji}s{qu}T 1A51 {0} ' (126)

{ CjT}E{qoj}T (A0 {9;} (127)

Stability derivatives relating changes in generalized aerodynamic forces to changes in
the generalized accelerations in the elastic degrees of freedom are:

T, T
{C}=to} (451 (o)) (128)

The derivatives in equation (128) may be computed on the basis of aerodynamic
influence coefficients for reduced frequencies that are small and for symmetrical mode
shapes.

In summary, equations (119) through (128) contain all the stability derivatives for a
symmetric, elastic airplane. If the appropriate aerodynamic influence coefficients are
available, then all of the stability derivatives may be computed.

The stability derivatives computed on the basis of aerodynamic influence coefficients
represent a valid first-order approximation for the pressure coefficient of an inviscid,
isentropic fluid flow (ref. 30). In addition, it is assumed that the unsteady effects are due to
motion of sufficiently slow variation that the reduced frequency is of zero order of
magnitude (ref. 28).

7.2 Theoretical Methods

Stability derivatives relate changes in the aerodynamic forces and moments on an
airplane to changes in airplane attitude and motion. This section describes a basis for
computing the stability derivatives from the mathematical theory of fluid flow. The
aerodynamic influence method is used in the development. Results sought are the
aerodynamic matrices [A;], [A,], [A3], [A4], and {Ag], which appear in the matrix
formulations of the equations of motion appearing in Sec. 5. The detailed developments are
contained in app. B. This section merely summarizes and discusscs the physical aspects of
the problem, but proceeds from rather fundamental concepts.
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splane in flight may be looked upon as a solid body in motion in a fluid. Its
motion disturbs a portion of the atmosphere. However, its shape ind motion are usually
such that the perturbation of the disturbed fluid is very glight. In fact, the magnitude of
perturbation velocity of the fluid, when divided by the magnitude of the airplane’s velocity, is
of order of magnitude zero except in the vieinity of stagnation points. Also, the viscosity of
the atmosphere is so small that viscous forces are negligible in comparison with dynamic
forces in the fluid, except in a thin layer of flow at the airplane’s surface and in its wake.
These conditions allow small perturbation inviscid flow theory to provide an accurate
theoretical representation of the flow about an airplane.

As shown in app. B, as well as in most textbooks on aerodynamics, in the theory of
small perturbation inviscid flow the principles of conservation of mass and momentum and
tne equation of state are reduced to a single linear partial differential equation. This flow
equation contains a single dependent variable, perturbation velocity potential ¢ . The flow
equation is written in terms of a fluid axis system whose coordinates, along with time, are
the independent variables in the flow equation,

The velocity of the fluid is given by V= U(-i. +7 o ). This is the velocity of the fluid
particles measured relative to the fluid axis system and U is the component, along the x-axis
of the fluid axis system, of the velocity of the airplane relative to fixed space.

The perturbation velocity potential must be such that it satisfies the flow equation and
such that the velocity field \_/.(x,y,z,t) does not produce flow through the surface of tae
airplane. This last requirement is called a boundary condition. An additional requirement of
the perturbation velocity potential follows from the vortex laws of Helmholtz. The wake
behind the airplane must be such that they are satisfied. However, the pressure in the fluid
calculated from Bernoulli’s equation must be continuous across the wake. Discontinuities in
the pressure field in the fluid can only exist across solid ¢ 2dies. This is all that will be said
about the flow problem here; for a more detailed descripti:n, the reader may refer to app.
B. The special form appropriate to the questioa of aerodynamic forces in stability and
control considerations will now be introduced.

The boundary condition at the surface (see app. B) may be written as

'ﬁ-(if's - =0 (129)

~—

where T is a vector normal to the surface of the airplane. The velocities Vs and 4 are the
velocities of fluid particles and elastic particles of the airplane at the surface. They are
measured relative to the stability axis system that rotates and translates with the airplanc
Xq, Yg, Z).



The stabi'ity axis system moves relative to the fluid axis system with the translational
velocity Vi = Vig + WKg and rotational velocity @ = pig + Qjg + Rkg. Thus, the two fluid
[

velocities V and V; at the surface of the airplane are related as
%

A% VS VR WX I (130)
where ?; is the position vector of a point on the surface relative to the center of gravity, the
origin of the stability axis system.

Using equation (130), the boundary condition at the airplane surface becomes

o - [UT+ UTp- (Qzg - Ry )T, - (V+ Rx - pz) s -@+py, -Qx )k -8]=0 (151)

o

where it is important to note that some quantities are described in the fluid axis system
wiile others are described in the stability axis system. Also, each of the velouty
components appearing in equation (131) is treated as an independent variable in the
equations of motion, Sec. 5. Further, the perturbation velocity T¢ must be of order of
magnitude zero. Thus, each individual term involving a velocity component when divided by
U must be of order of magnitude sero for a valid approximation based on small
perturbation, inviscid flow theory. The approximation in the smali perturb tion equations
of motio.1 becomes linked to those in the flow theory through this boundary condition,

In the reference motion of the airplane, which-is steady, the boundary con" [_.
reduces to

n
- s _ 1 . _ - R
RS [0 5+ @26 - Ryygig + (Vi + Ry xg)dg
-Q, xsl kg + dl] (132)

In the disturbzd motion, the airplane may be so orient .d relative to f:aed space that
the Euler angles are perturbed as ¥, ©, 9 from those of the reference motion. These
variables are treated as independent, so that their perturbations are independent of the
velocity perturbations. The flow problem must be reorien..d with the ~irplane. The only
change ir the boundary condition resulting from the orientation perturbation arises from
the elastic deformation perturbaiion due to the perturbation of the gravity forces. Thus,
there is a change in the direct: -1 of the normal vector n relative to the stability axis system,
but there is no other change.,
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Neglecting products of perturbation quantities and using the refe -ence motion
boundary condition, the perturbed boundary condition is found to be

X 9z} ry
— e u - by S 5y,
o, [ e, ()
+(r;‘s__‘:s)-:r +(%y_s-qFXS_)E‘+.d_p_].n (133)
1 Y/ U Uys Ul
+(5nl-1s

The velocity potential o P is the perturbation to the perturbation velocity potential in the
reference motion such that ¢= ¢ + ¢p' The vector G_n.l is the change in the vector
normal to the surface caused by the change in elastic shape of the airplane from reference to
disturbed —otion. To a first-order approximation, it is given by the elastic rotation at the
surface EE as

6n1 = GE xn, (134)

and EE is due to the perturbed gravitational, inertial, and aerodynamic forces. It must be
found from the i al equilibrium equations of Sec. 5, as must the perturbed elastic
displacement rate,.ifp

The velocity component Un-U9 is the perturbation to the flow from its freestream
direction that is required to satisfy the slope boundary condition at the airplane’s surface. In
general, the perturbed flow may be unsteady, but the angle between the direction of the
streamlines of the undisturbed flow and the streak lines of the disturbed tivow is defined by
tan ¥ = R-V ¢ at the airplane’s surface. This is the local incidence angle at any instant of
time and because it is small

z-ﬁ’eib (135)

e}

By definition of the reference motion, the incidence angle does not change with time
in the reference motion, so that

Y=1; - Vo, (136)

is «he angle between unperturbed and perturbed streamlines. The pecturbation, local
incideace angle



g~ n - Vo (137)

e

is in general a function of time.

The local flow incidence angles must be related to aerodynamic pressure at the
airplane’s surface before the above results may be used to generaté stability derivatives.
Surface pressures are readily computed from the velocity potential using an appropriate
small perturbation form of Bernoulli’s equation as shown in app. B. Thus, the problem
centers on finding perturbation velocity potentials which satisfy the flow equation and the
boundary conditions.

The most widely used means for finding perturbation velocity uses the linearity of the
flow equation in its small perturbation form. Elementary solutions to the flow equation are
obtained. These are perturbations to uniform flows produced by sources and doublets. Their
distribution throughout the flow and their strengths are so adjusted that the uniform flow is
perturbed into conformance with the airplane’s shape and motion. Ihe sources and doublets
are located in the volume that is interior to the airplane and doublets are distributed in the
wake. In lieu of the solid body, an interior flow is formed; the boundary between this
interior flow and the exterior flow is made to conform to the airplane surface. Further, the
circulation required by the Kutta condition is imposed and the wake is made to satisfy the
vortex laws.

The linearized flow equaticn is essential to this type of flow representation. The linear
combination of the eficcts of the sources and doublets is only possible if the flow equation
i alinear partial differcntial equation.

In practice, the flow boundary condition cannot, in general, be satisfied at every point
of the airplane’s surface. A finite number of surface points are chosen as control points, and
the boundary coadition is satisfied at those points to within some cnosen numerical
accuracy. At points in between, the boundary condition may or may not be satisfied.
However, when the number of control points is large and the surface is a smooth
aerodynamic surface, the approximation may be of high quality.

Additional approximations may be introduced. These ate associated with a lineariza-
tion of the boundary conditions in a manner consistent with the linearization of the flow
equation. As shown in app. B, for thin bodies such as wings and tail surfaces the thickness
may be considered separately from the incidence. For slender bodies such as fuselages the
axial component of flow may be considered separately from the cross-flow component.
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The thickness of thin bodies may be represented by a distribution of sources at a
middle surface, and incidence is represented by distributed doublets. For the axial flow over
slender bodies, line distributions of sources are placed on the fuselage axis. The effect of
cross flow is met by line doublets along the fuselage axis. .

There are several schemes us=d in distributing the sources and doublets. They may have
specified distributions over small regions called panels. In this case their strengths may be
constant or have some specified variation over the surface of the panel. The distributed
doublets on the panels are vortex sheets. In the methnd by Woodward, designated as
computer program TA-67A in this repurt (ref. 35), the Kutta condition is satisfied along
with the vortex laws on each panel (see app. B). This method does not require separate
treatment of the wake.

An alternate scheme for treating the vorticity distribution on thin bodies utilizes a
vorticity distribution represented by a series of loading functions that vary over the entire
middle surface. The coefficients of the series are adjusted so as to satisfy the flow boundary
condition at a finite number of contro! points. This is a collocation method; numerous other
methods have been used. Reference to the books by Ashley and Landah! (ref. 27) and Ward
(ref. 30) will provide an introduction to many of the alternate approaches.

The approach used by Woodward (ref. 35) works well with the method that includes
the empirical corrections required by stability and control applications. It relates a localized
cause to a localized effect so that localized empirical corrections may be introduced.
Aerodynamic influence coefficients are generated and admit of the following aerodynamic
equation

{Fyt=a(tal{g}+ 1AL {¢ ] (138)

where the elements F 5. are the aerodynamic panel pressure forces. The elements P; are the
incidence angles of the panels and -‘w‘Ti are the panel incidences due to thickness. The
matrices [A] and [AT] are matrices of the corresponding aerodynamic influence
coefficients.

Up to this point the discussion of the aerodynamic problem has ignored the effects of
unsteady flow; the result represented by equation (138) is valid only for steady or
quasi-steady flow. Asshown in app. B, however, an approach suggested in Miles’ monograph
(ref. 28) may be used to include the effects of unsteady flow in a manner appropriate to the
aerodynamics of stability and control. This approach leads to a direct extension of equation
(138) when the time dependence of the flow incidence angles is slowly varying. As shown in
app. B, the time variation must be such that its reduced frequency is in the region of
reduced frequencies of order of magnitude zero. This is a good approximation for
consideration of the stability characteristics of large, flexible airplanes even though it is not
satisfactory for flutter problems.



The consequence of mechanizing this approach following the method by Woodward
will lead to an aerodynamic equation of the form

{F,} =T ((A1{g} + [6a1 {3} + (A 1{&T}) (139)

The elements of [ 6A] will relate the panel pressure forces to the rates of panel incidence
change.

By evaluating the boundary condition given by equations (132) through (136) at the
aerodynamic control points and substituting it into equation {139), a complete formulation
of the aerodynamic problem of stability and control is obtained. In the reference motion
case, time dependence drops from consideration, and the pressure force due to thickness
enters the problem only through the elastic deformations. However, an additional
consideration is necessary in the case of disturbed motion. This involves the coordinate axis
systems used to describe the problem.

The aerodynamic equation, equation (138) or (139), is derived in terms of the fluid
axis system. It may be recalled that the freestream velocity, U, and the Mach number, M, are
perturbed. The fluid axis system in the reference motion differs from that in the disturbed

motion. The aerodynamic equation is perturbed, and this may be expressed by writing
equation (139) as

{FA1}+ {fl=@ 3 (IA I+ [a‘{\}] 1) dy, b+ {y,h

+[6A1{3} +<[AT1] N [":;'f] M, ){QT} (140)

By discarding products of perturbation quantities and using the form of equation (139) for
the - ¢ference motion, it follows that

{fA}zal{i:z[A I+M [au”{y’l} [ [ATI]J"M [:?I H‘i };

+q, [A)] {pr}+a1[<5A1{jgp} (141)
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This expresses the perturbation to the aerodynamic forces in terms of the perturbation
motion variables. The first-order approximation, 69 = 2q1 u/U 1’ has been used. Also, it
may be noted that the first term contains products of perfurbation quantities since the
reference motion incidence angles must be of perturbation order. The justification of this is
somewhat loose. It falls on ihe requirements of stability and control. The u perturbation
variable must be treatzd independently of the other variables. The first term, which contains
u solely, must be considered separately in the order of magnitude consideration.

This last consideration points up a problem that requires a great deal of further
investigation. Equation (141) has been written nearly a priori, but the basis of the equation
is far from self evident. A very careful and fundamental order-of-magnitude analysis is
required in order to obtain a consistent, valid formulation of the influence coefficients in
the equation. This is illustrated by the development of the results, which appear in app. B. A
derivation of equation (141) is carried out for a thin body undergoing longitudinal
perturbations. The basis for a sour< extension of that analysis to thin wing, slender body
combinations undergoing longitudinal disturbances also appears to exist (refs. 29 and 35).
However, the lateral-directional problem for wing-body combinations has not been
developed. An intuitive approach to developing a computer program for solving this
lateral-directional problem might be instituted. However, without an order-of-magnitude
analysis there would be no way to assess the limitations of such a program. A failure of the
program to accurately predict lateral-directional derivatives might defy further intuitive
judgment and a large engineering effort might be needlessly lost in numerical
experimentation.

In the preceding equations, (133) through (141), elastic deformations must be
expressed in terms of the free vibration mode shapes. The perturbation to the elastic
displacement vector is given by

" A%} =tolu } (142)

where the generalized perturbation displacements up; are functions of time alone. The
displacement rate dp in equation (133), therefore, can be written in matrix form as

{ép} = [o]{up} (143)

The triple scalar product (© Ep e 71'1 ) ;; may be written as

T8 Ve =(-0_7 k)1 144
(lser) By ( Vg s O ks) ny (144)
p p D



where ¥f_ and ©F are the components of elastic rotation about the zg and y axes,
respectively. Two add?tional modal matrices are introduced such that

3¢Ep$ = [%] {up} and

GEJ ='l¢e] {up} (145)

These represent the elastic slope deflections required for equation (144), but it must be
noted thay the free vibration mode shapes do not describe the elastic deformation
completely when the mode shapes are generated in the manner described in app. A. The
elastic deflections arising from perturbation changes to the orientation of the gravity force
and rigid-body inertial forces must be introduced separately. This is described in the
discussion leading to equation (6.86b) in app. A as well as in the disucssion given in par.
6.3.4 of app. A.

Denote the elastic rotations arising from inertial relief and gravity perturbation forces
I4 14
) fos,)
p p

The elastic rotations may be found from specialized forms of the flexibility matrix dencted
by [C¢] and [66] . Then, in accordance with equation (6.165) of app. A

3%& ; ‘[Ew]tmlfal(gat—{Vp}+[M1] {Vp}+[Mz]{rI’)})
and P 146
zeépi -[Ee]fml (3] (?%;‘ (v, D]V} + (M, {7}

Further, letting the matrices of the components of the normal vectors_n-Ii be defined as

(%=t 8] T,=Md 5] K=,

]

the expression for the perturbed flow incidences, equation (143), may be written in matrix
form as

{#,1=[n,] ({1}%+ {ZS}I% - {ys}gfﬁ'lfwxl {up}) (147}
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-+ tny;l <{1} B+ {xs}ﬁr—l-- {zs}%z;- (0,1 {“p} - {%p} +TII_1'[¢Y] {ﬁp})

+[nZ] ({1}a+{ys}U&1— {x.} %i-k [e) {up}+{eép} + %T.l.[q)z] {fxp})

(147)

By introducing appropriate matrix definitions, equation (147) may be written as

{¥,}= (61 {V }+ 1G] {u b+ (1G] {u} ‘Enyl{ } +[n, Jle }(148)

where

{VP}T = I_u, v, W, p, 4, r_|

as in Sec. 5.

The perturbation aerodynamic equation, equation (141), may be written in an
abbreviated form by letting

(4, = [2 (A1 +M [aM]]{‘P b [ [ 1]+M1 [3;1\71?"]]{%} (149)

so that on introducing equation (148)
{f,}=1a,{a} 1+q1[A1 (6,1 {V,}+q, [6A]{V }
+ 3, [A1 16,1 {u 1+, [14,] 1G,) + (6a] [Gzl]{&p}
+q, 164 [Gg] {i)} +q, (a)) ( [n,] <¢ép} +[n,] {q»ép}) (150)
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where the effects of time rates of change of {¢'g _} and {¢'E _}have been concidered
negligible. The aerodynamic matrices introduced in the equations may now be recognized as

L4
[}

(a,] =7, :{Kl}-[}—l, {0}, {0} {o}{o} {o}]+ q, (4] g, (157a)
(A1 =4, [[aAl +{a)] (- fnyj €+~ ] [c‘:el>[‘m;| [Ta]T] (151b)
(A ]l =7, _[All [(Gy)+ [A] (— fny;l [Cyl + fnZJ [c‘:e])[m] (01® [Ml]] (151c)
[a,] =1, :(All [Gy] + [6A ] [Gzl] (151d)
(A =7, [6A1 [G3] (151e)

Hence, with these definitions equation (150) becomes identical to equation (126) of Sec. 6,
ie.,

{2} = 1AV} (A 0 {V }+ (Al (o] {u }+ (A ) 101 {3}

+[A] (9] {iip} (152)

7.3 Semi-Empirical Methods

The semi-empirical or “handbook”™ methods have evolved from numerous wind tunnel
tests and theoretical analyses of various aircraft configurations to evaluate the effects of
geometry on the stability derivatives. These techniques, as do both the purely experimental
and purely theoretical techniques, seek te solve the exact flow equations of ref. 33. In
addition, the handbook techniques seek to improve the theoretical solutions based on
inviscid fluid dynamic results by including experimentally measured forces and moments
due to leading edge suction, boundary layer, and other nonlinear effects not included in the
inviscid approximation of the aerodynamics. The inviscid flow theory is then modified with
the experiiiental results and plotted as functions of aerodynamic and geometric parameters
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(ref. 6). An engineer interested in calculating stability derivatives for a particular
configuration must seek the appropriate tables and select the separate effects due to wing,
body, tail, canard, etc. Appropriate interference factors betwuen wing-body, wing-tail, etc.,

are also presented in the tables to account for the nommearlty of the flow field. Appendix B
indicates which of the stability derivatives can be calculated using the USAF Stability and

Control Handbook.

The procedure used to calculate the stability derivatives by the handbook technique is
best illustrated by an example, Consider the calculation of CL

CLO,:( La) 5’ [KN KW(B)+KB(W)] T (153)

WING-BODY TERM TS 2N b A R
KW(B B(W) 2 /ieS S

where  (Cp )’

1"
Kw ()

11}
Kpw)

o=

S—————
HORIZONTAL TAIL TERM

is the lift curve slope for the wing of appropriate aspect ratio,
taper ratio, section profile (camber, thickness), twist distribution,
etc.

is the ratio of aircraft nose lift to aircraft wing lift.

is the effect of lift carryover on the wing due to the body.

is the effect of lift carryover on the body due to the wing.

is the lift curve slope of a tail with the appropriate geometric
parameters.

is the effect of lift carryover . n the tail due to the body.
is the effect of lift carryover on the body due to the tail.

is the change in downwash on the tail due to the change in
angle of attack of the airplane.

is the ratio of dynamic pressure at the tail to freestream dynamic
pressure.

is the ratio of wing area to the “‘effective area’ of the tail.

is the ratio of effective tail area to the actual tail area.



Equation (153) represents summed knowledge based on the personal experience of the
authors of the handbook. It should be emphasized that the approximation of Cy , in the
equation is not unique because of the “‘expericuce factor”sinvolved. Therefore, there is no
guarantee that the approximation is correct for all configurations. The handbook technique
is the only semi-empirical technique available at this time that can be used to estimate
nonlinear effects in the viscous fluid dynamic equations, Accuracy by this technique is only
a function of the ingenuity, insight, and experience »f the engineer performing the analysis.

One other disadvantage of the handbook technique is that it can only be used to
evaluate th - rigid and equivalent elastic mathematical models of an elastic aircraft. It cannot
be used on the completely elastic and residual elastic models because there is no known way
to develop consistent structural derivatives dependent only upon external geometry
parameters.

Handbook data for a study SST configuration and the 707-320B are presented in app.
B. .

7.4 Experimental Methods

The two principal experimental methods used to extract the stability derivatives are:
(1) wind tunnel tests of a scaled model of the proposed aircraft and (2) flight tests of a
similar aircraft or the actual aircraft. Both of the experimental methods are potentially more
accurate than either the theoretical or semi-empirical methods, but neither offers a useful
and convenient way of optimizing a configuration for good stability and control
characteristics.

The main disadvariage of both experimental methods is the high cost of each test
point and the difficulty of correcting the collected data for errors due to experimental
procedure. In addition, the only derivatives generated by a flight test technique are for
-completely elastic airplanes, and the extraction of rigid airplane values for comparison with
the results of other methods is difficult, if not impossible.

7.4.1 Wind tunnel tests,-- Wind tunnel tests.are a reliable way of measuring rigid
aircraft static stability derivatives. In addition, several experimental techniques to measure
the &, q, and p dynamic stability derivatives are currently under development.

Recently, a new technique of generating the static stability aerivatives for an
equivalent elastic aircraft was developed and is outlined in app. B. A semi-elastic model is
built with structurally and aerodynamically scaled wings and tail. Force and moment data, if
properly adjustea for scale effects and tunnel wall effects, can then be reduced to give the
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equivalent elastic stability derivatives, These derivatives are then used in the dynamic
equations describing the airplane’s motion through space. Inertial effects must te included
in the analysis to account for load factor changes. 2

)

In some cases the equivalent elastic stability derivatives can be calculated from rigid
wind tunnel data. In this method the lifting surface computer program is used to analyze the
rigid and elastic aircraft First, rigid lift cuwve slopes are calculated; then, using the
appropriate structural influence coefficients, the elastic lift curve slopes are calculated. The
ratio of Cp ,x/CL R = Lg/Ly is formed and applied to all subsequent rigid wind tunnel
d..a to calculate the effect ol elasticity. For some configurations, such as the SST of this
study, the effect of elasticity on rigid wind tunnel values can be estimated by an elastic
increment (see par. 7.5).

Suveral difficulties arise in the use of wind tunnel data. Because the model parameters
used to evaluate stability derivatives have not yet been outlined, the engineer must
determine the correct trip-strip size and location for each stability derivative to duplicate
the praper nonlinear viscous effects. The effects of Reynolds number and “rigid model
elasticity”” are usually unknown. Also, some wind tunnel tests may be plagued with high
tunnel turbulence or other forms of wind-tun..el-induced effects in the desired force and
moment data.

Data for a study SST configuration and the 707-320B are presented in app. B.

7.4.2 Flight test technicues.— The evaluation of stability Jerivatives from flight test
data should, by definition, give the most accurate elastic airplane values. The engineer can
use such data in much the same way thai he uses the handbook technique, provided
individual component contributions to each stability derivative are known or can be
extracted from the data measured in flight testing.

The primary groblem associated with stability derivative evaluation from flight test
daii is the difficulty of performing maneuvers hoiding all motion variables, except one,
equal to zero. Obviously, even if it were possible to fly only at an angle-of-attack variation,
the aircraft would elastically deform at some frequency determined by the structural
properties, and the force and moment data measured at the center of gravity would contain
both a¢ and structural motion (dp) contributions.

In addition, there are a limited number of maneuvers available from which to extract
the stability derivatives. The usual methods for the longitudinal stability derivatives are
control column steps and pulses, windup turns, and thrust steps and pulses. Lateral
derivatives may be extracted from maneuvers arising from steady sideslip and from wheel
and rudder-pedal steps and pulses. The resulting forces and moments imeasured at the



aircraft center of gravity by accelerometers re_tect not only aercdynamic effects birt also the
effects of the pilot’s transfer function (lays, response time, insensitivity to sm.ll but
measurable errors oF trim, etc.) and the control system elasticity (cable stretch, internal
friction, and nonlinear effects due to the wear of h«draufic systems and control surface
linkages). Thus, the stability derivatives extracted from such flight test data also reflect
these errors.

Data fo. the 707-320B are presented in app. B.

7.5 Comparison of Methods
Figures 6 through 17 present comparisons of the theoretic ° _emi-empirical, and
experimental evaluations of Cf @ Cm o’ Cm..s Cmu’ and Cp_stability derivatives. The
experimentally detesmined values (wind tunnel and flight iest) are to be taken as the basis
for comparing accuracy. A comparison of the estimates ¢ f all stability derivatives listed in
table 3 is contained in app. B. Discussion of the approximation, used in the estimates also
appears in app. B.

The stability derivative evaluations presented here we.e chosen because a complete
comparison of theoretical and semi-empirical methods cou’! be made against both wind
tunnel and flight test data. As shown by tables 6, 7, and 8, estimates are not possible fc:
both techniques for all stability derivatives of interest. Further, testing techniques do not
exist or have not been used fo evaluate all of these stability derivatives for the 707-320B and
the SST configuration. Thus, a basis for comparison does not exist for all of the desired
calculations.

Wind tunne' evaluation of Cy,  and Cy, = from both rigid and elastic wind tunne]
models is shown in figs. 16 and 17. These data are shown in comparison with estimates
obtained irom liting surface theory. The results are functions »f both dynamic pressure and
Mach number, as noted on ihe figures. Consequently, the interconnecting lines between
values for the elastic model are for visval purposes only; .nterpolation for intermediate
values is not possible.

Primary impc tance has been placed on the calculaton of the static and quasi-steady
longitudinal derivatives, since for these derivatives all three techniques are applicable. Four
of the six pri aary longitudinz! derivatives are presented in figs. 6 through 13 to compare the
techniques, For both the 707 ar.1 SST, the lifting surtace values of CLc,R (figs. 6 and 7) are
closer than the handbook values to the wir.. .unnel values. The velue of Cpy , g for the 757
(fig. 8) calculated by lifting surface theory is closer to the wind funnel value than arc val 3
calculated by either lifting line or handbe. '« techniques. In the case ¢ the SST, Cm“-R is
also calculated more accurately by the lifting surface technique than by the hanubook
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technique. No experimental data were available to evaluate the accuracy of Cy, g (figs. 10
and 11) for the 707 and SST. The value of CmuR (figs. 12 and 13) calculated by lifting
surface theory compares very well with wind tunnel daia for both the 707 and SST; the
handbook technique will not handle this derivative. )

The only significant lateral-directional derivative listed in table 3 that can be calculated
by both lifting surface and handbook techniques is Cg . Figures 14 and 15 show the
comparison for Cng; unfortunately no rigid experimental values were available.

The comparison of the techniques used to calculate elastic stability derivatives is
hampered by an inconsistent set of data. Of the five primary derivatives shown in figs. 6
through 15, Cng for the 707 (fig. 14) provides the best test of accuracy. Both the
handbook and lifting surface techmniques give the same value of Cpr at 3050 meters
altitude, tut at 10 675 meters the lifting surface technique is more accurate. For this reason,
and because lifting surface theory is more accurate for rigid derivatives, it is concluded that
the remaining equivalent elastic derivatives will also be calculated more accurately by the
lifting surface technique than by the handbook technique.

As additional justification, figs. 16 and 17 show that the incremental error between
wind tunnel and lifting surface values of C, o and C;, does not increase appreciably
between the rigid and the equivalent elastic cases. In fact, figs. 16 and 17 indicate that an
empirical correction to the rigid wind tunnel data may result in a more accurate elastic value
of the stability derivative. For the study SST at 72° sweep, these corrections are of the form

“by T “Ly ‘ “\“r, " Lafwr
EqEl Computed/Elastic Computed Rigid
C = - -
My Cma Cma CmoleT
EqE1l Computed JElastic Computed Rigid
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8.0 METHODS FOR CALCULATING STABILITY
AND RESPONSE CHARACTERISTICS

%

8.1 General Considerations

The determination of static stability and control characteristics may be considered as
an intermediate step in the solution of the total problem of dynamic stability and control.
Taking this intermediate step has a number of advantages.

1. Steady-state trim, balancing, and control information are provided.

2. Comparison with static stability criteria can be made.

3. Through examining the static picture it is possible to predict some dynamic

characteristics.

However, the analyst is limited in trying to predict the dynamic motion from static

stability considerations for the following reasons.

1. Static longitudinal stability is, in general, a prerequisite for dynamic longitudinal
stability. There are, however, instances where static stability is not required for
dynamic stability.

2. Static stability is usually, but not necessarily, required for good handling qualities.

3. Structural dynamic motions cannot be investigated. Static stability analyses are only
concerned with the rigid and equivalent elastic airplanes. )

Static stability characteristics are found by an analysis of the stability derivatives (using
calculation methods discussed in Sec. 7), and by solving for the neutral point, maneuver
point, etc. through fairly eiementary expressions goutaining the stability derivatives.

Dynamic stability characteristics are generally determined by analyzing the roots of the
characteristic equation when the perturbations of’ the airplane motion from the steady state
are small. Approximate formulas for the frequency and damping of the motion are at times
applicable for small perturbation motion. When nonlinear effects are significant, time
history solutions of the arbitrary or large perturjation equations are used to study the
stability characteristics.

The three airplane models treated in this study, viz., rigid, equivalent elastic, and
completely elastic airplanes, were derived from consideration of the degree of airplane
flexibility. The completely elastic airplane has been analyzed with various elastic degrees of
frecdom, and the effects of residual flexibility have been studied. The various structural
mathematical models have been reviewed in Sec. 3. Static and dynamic stability character-
istic. were determined by using stability decivatives from several sources: handbook
formulas, aerodynamic lifting surface theory, ana wind tunnel data.
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General results obtained from the static and dynamic analyses are presented in tables 9
and 10. Table 9 summarizes the accuracies obtained from lifting surface theory and hand-
book techniques in predicting the rigid airplane static stability and control characteristics
when compared with wind tunnel predictions. A limited amount of substantiation with
flight test data was obtained. Also shown in table 9 is the relative effect of elasticity on the
varfous static characteristics. Although most of the substantiation of methods was for the
rigid airplane, one could expect to obtain similar accuracies for the equivalent elastic air-
plane. A method based upon ratioing the elastic and rigid stability derivatives that can be
expected to improve the prediction of static stability characteristics is discussed in par. 8.2.
The poor accuracy obtained for some configurations and characteristics is almost entirely
due to poor prediction of the stability derivative Cm,.- Appendix B discusses the calculat*on
of this derivative and the expected improvements to the lifting surface theory mechan..a-
tion program to improve the prediction of Cma'

S -

Table 10 presents the same general results for the dynamic characteristics of the
airplane studied. In addition, general results on the usefulness of approximate formulas for
predicting frequency and damping are summarized, and the number of elastic modes needed
for an accurate dynamic elastic analysis is given. Appendix C should be consulted for details
of the derivatives that were used in an individual method and for a complete discussion of
all the dynamic stability results. A limited discussion appears in par. 8.3.5 for some of the
more important results.

8.2 Static Stability Characteristics

The static stability characteristics of an airplane are strongly dependent on the indi-
vidual stability derivatives and -on how the stability derivatives combine. The effects of the
individual stability derivatives can be judged by comparing their signs with the static stabil-
ity criteria, as discussed in Sec. 6, and by noting the magnitude of the derivative. The sign of
the derivative simply indicates whether the airplane is stable, unstable, or neutrally stable
with respect to a certain motion variable (requirements for stable motion are summarized in
table 11). The raagnitude of the derivative gives au indication of the degree of stability or
instability.

The derivatives in combination can also be used to evaluate airplane stability character-
istics. The static stability and control characteristics usually investigated are:

1. Elevator and stabilizer trim angles;

2. Stick-speed stability;

3. Elevator and stabilizer angles per g;

4, Neutral poiut;

5. Maneuver point.

Expressions used for calculating the above quantities are given in equations (154)
through (161).



TABLE 9.— STATIC STABILITY CALCULATIONS-GENERAL RESULTS

Relative accuracy of calculation method? Relative

Computer lifting surface, "USAF °* effect of

rigid and equivalent elastic handbook elasticityb
Stability and Sub Super Sub Super Sub |Super

control 707 |SST | SST |[707 | SST | SST

characteristic | Rigid| E.E|Rigid | Rigid | Rigid | Rigid | Rigid | /07|SST| SST
oE » iHj Glcl|P | F|[P]P] G |LlL]L
dég/dV G|gijp | F [P | P| G [M|S|M
dop/dn Glgi|P | G| P| .| F |s|M|M
hy G|c|P | F |P P | L[M[ M
h, G|lc|[P | F P P[] F [LM|M

Reflects almost entirely ability to calculate derivative Cp, o and resulting effect on
characteristic.

G (good)—method compares favorably with wind tunnel predictions (exception allowed.)
F (fair)—less favorable correlation with predictions.

P (poor)—method does not compare favorably with predictions.

L (large)—elasticity considered a significant effect.

M (moderate)—elasticity considered moderately important; not quite as significant as
differences due to stability derivative calculation methods.

S (small)—elasticity considered a minor change to stability characteristic; changes due
to stability derivative calculation methods usually much more important.

No data available.

Correlation with flight test, but based on a very limited amount of data.
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TABLE 11.— STATIC STABILITY CRITERIA

Observation .
(Section 6) '
Ch >
Du 0 C‘Qp <0
Cy <0 C.. <0
YB mq
C; >0 <
La Cnr 0
Cng >0 Cpy, >0
C_ <0 C, <0
m, [} 5
Calculation
Stick-speed stability dép [dV >0
(Section 6) 1

Elevator angle per g

6 <0
d El/dn|\,cl

Neutral point
(p. 78, ref. 4)

Aft of aft c.g. limit

Maneuver point
(p. 59, ref. 4)

Aft of aft c.g. limit
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8.2.1 Elevator and stabilizer trim arigles.—For rigid and equivalent elastic airplanes, the
horizontal stabilizer angle to trim is given by

i, = (154)

Similarly, the elvator angle to trim is given by

C + C C -C

_ 7Ly °m, ma( L, Lo)
1 m. ~L _Cm6 CL
E I

(155)
a

8.2.2 Stick-speed stability.—The elastic airplane stick-speed stability for stabilizer trim
is given by the following expression:

duH): 1 C To, c Lo
dv CmazCLi ~Cmi CLa Loz 9q m_ 3q
H H
aC
(CLI acLo) ( ) aC LiH
-C —it e J+ | C -C e | C —
AN o Ly L,/ @a Hi\ Ma 91
ac acp acmi
o o H
+C = — - _ PV
L, q m, 9q L -9 C
1H 1H a 1
aC oC oC 5C
N i P c L°+c o, ¢ “a
oM L, "L ] “m_ oM L. oM m_ oM
1 () o
ac 9Cy, Ch.
. m u '
“lm \Ton Cr. *Cn 3~ Ci oW
1 a Q
H
-C aCL"’ 1 156
m, 3 | {7 (156)
"



For the rigid airplane all variations with dynamic pressure vanish, i.e., 9Cp 0/E)ﬁ =
8CLa/8c'1 = (), etc. Therefore, for the rigid airplane equation (156) becomes

L ad

= io —Lov, + c, -C
& "C_ ¢ -¢. © m g ¢ T)Tam \"L, "L,
(47 lH IH o
ac, aC__ oy, ac_,
C %4 ¢ 04 —oe i 2c (157)
m T3M  “1, oM © “m oM 'H\ oM CL,
H
Cy, Chy, ac
i i L
+C H ¢ -c 2 3 \
m oM L oM m, OM a -
(4] a lH

As shown in table 11, a stable gradient of longitudinal control displacement versus
speed is defined as one for which diyy/ dVI n=l >0. Stick-speed stability is usually referred to

as a handling-qualities parameter. The equations for elevator speed stability are, of course,
identical with equations (156) and 157), except that g replaces ifj in all terms.

8.2.3 Elevator angle per g.—An expression for elevator angle per g in a normal pullup
can be written as

2 )
C c, +=25|[C, C -C C
dép _ my, "L, oy2 \ "Ly m, mg I"q. (158)
dn . CL Cm - Cm CL
a M5 a OE

E

.Equation (158) holds for both rigid and equivalent elastic airplanes. A stable gradient
of elevator displacement versus load factor is defined as one that satisfies

vy <0 (159)

The term containing the stability derivative CLq is usually insignificant.

8.2.4 Neutral point.—The neutral point is calculated from the expression

(160)
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where h is the center-of-gravity position. The requirement on the neutral point is that it
should be aft of the aft center-of-gravity limit. Equation (160) is good only for small angles
of attack in the linear range.

»
[

8.2.5 Maneuver point.—An expression to calculate the maneuver point is

Cm

h =h - (161)

L _¢
sz L
pST L,

The effect of the derivatives Cp_ on the maneuver point is negligible, as it was for the
elevator-angle-per-g characteristic. The requirement on the maneuver point is that it should
be aft of the aft center-of-gravity limit.

Complete derivations of the above equations for the static stability characteristics can
be found in app. C.

Five methods were used in th¥: study to determine the longitudinal derivatives.

Applicability
Equivalent
Rigid Elastic
Airplane Airplane
1. Computer, using lifting surface theory yes yes
{aerodynamic influence coefficient
method)
2. Handbook yes S no
3. Handbook combined with computer no ' yes
lifting surface theory
4. Wind tunnel yes yes '-
(limited)
5. Flight test no yes
(limited)

The characteristics of the rigid airplane were compared using the previously listed
expressions for static stability and control.

Elastic stability characteristics were determined using equivalent elastic stability deriva-
tives of the Formulation II type (app. B). These derivatives were generated by methods 1.
and 3. above,



Some flight test data were available to correlate theoretical predictions of longitudinal
static stability. The data were obtainred as part of the certification requirements for longi-
tudinal stability and control for the model 707-320B airplanes Results for both maneuvering
gtability, dég/dn and stick-speed stability, d8g/dV, were obtained from these tests. The
elevator-angle-per-g information was reduced from windup turn maneuvers.

Figure 18 illustrates some typical static margin resules for the 707-320B and the
42° -wing-sweep SST configuration. Variations in the results due to both stability derivative
calculation technique and elasticity can be noted. Appendix C contains detailed results for
all characteristics in graphic form.

Lifting surface theory (aerodynamic influence coefficient method) was found from the
static stability analysis to give better predictions than handbook methods for some cases
(fig. 18 and table 9). It gives direct, acceptable results for some stability characteristics for
equivalent elastic and rigid airplanes. However, if wind tunnel data are available a more
accurate way of-predicting elastic effects would be to compute an elastic-to-rigid ratio or
increment referenced to the wind tunnel value. This was substantiated in Sec. 7. For
example,

Cm
0
C =C Elastic
m, m, Cm
EqEl wT 0i%igid Computed

8.3 A:n Analysis of Dynamic Stability by
Ct..racteristic Equation Rooting

8.3.1 Applicability of characteristic equation methods.— Airplane equations of motion
can be reduced to a set of linear, second-order differential equations with constant coeffi-
cients when dynamic behavior can be approximated by assuming that motion perturbations
relative to the steady state are small (see Sec. 5). These equations ire called small perturba-
tion equations of motion and are amenable to generating characteristic equations whose
roots can be examined to determine motion characteristics.

The dynamic stability criteria for all characteristic equation roots are given in par.
6.2.1. These criteria can be satisfied by inspection, i.e., by checking the sign of the real parts
of the roots or their absence. However, these yes/no-type answers relate very little informa-
tion about airplane motion characteristics. Some of the parameters that can be deducea
from the roots and are more physically oriented are discussed in par. 8.3.2.
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8.3.2 Rigid and equivalent elastic airplanes.— The small perturbation longitudinal and
lateral-directional equations of motion are given as equations (17) and (18). It is possible to
take the Laplace transformation of the equations of motion and solve for the roots of the
resulting characteristic equations. However, the program that generated the roots and asso-
ciated data in this study used a different technique, which will now be described briefly.

The lateral-directional characteristic equation, with the indicated rigid/equivalent
elastic definitions, evolves from equations (17) and (18) as indicated in the equation in table
. 12. This equaticn is a result of the requirement that (for 8y = 6= 0) the equation

A D) {x}={o} (162a)
has nontrivial solutions, i.e., )
B
: {x}=%x }* {o} (162b)
r .

The longitudinal characteristic equation in determinant form evolves as indicated in the
equation in table 13. Inertia relief is handled implicitly as indicated in table 13 (called
Formulation II in app. B). The effects due to 8 cannot be treated explicitly and are handled
as summarized in table 13.

The expanded form of the characteristic equations of tables 12 and 13 for the small
perturbation equations of motion written in the parameter A is

Adeplic®iparE=0 (163)

where the coefficients A through E are determined by the case (longitudinal or lateral-
directional). Equation (163) is obtained by assuming the solutions

§=8 M/
. . s
log;tgg;nal a=a RA7A (164)
o= ht/t*
0
or
X
B=B, At/
lateral- At/
directional { ¢ = ¢0 e (165)
mode A A AL/tE
Tr= ro e

and substituting these into the equations in the form of equation (162a). After carrying out
the differentiation, eAt/t* ~an be eliminated, leaving



TABLE 12.— LATERAL-DIRECTIONAL CHARACTERISTIC EQUATION IN DETERMINANT FORM

L3
]

(@u-Cy)D-Cy 4Gy D+CL)  Ca- c,)

ACg, *Cy;D) i\D%- Cy D (gD +Cp) [[=0
. <

L.(C"ﬁ +Cy. D) GgP?+Cy D) iD-Cy |

where: p= MlpSwl; M=W/g; 8=b/2
D=t* d/dt; t*= )V,

Note: For the equivalent elastic
airplane, Cyﬁl’ CYfI . Cgi;l, and C"'S;I

are not accounted for. -

e . Equivalent plastic airplane
Rigid airplane . @ & @

All derivatives are conventional Derivatives include elastic effects due
rigid derivatives. ' to aerodynamic loading (Formulation I)
and would have E subscripts.

iA = Ixx/pS, 23 ia = (Lyx - Cp; ASwb)pSy 3

ic==rzz/psw!-"’3 iC = (Izz - Cny d Swb)/pSw 3

ig = Ixz/pSy, 1 __(Ixz +%Cpi; GSwb + ¥%Cnyy ASyb)
g =

W = Actual Gross Weight - W W=gM- CY');I Sy M=W,/g

Assumptions required:

D1 and 2, D5, D7, D11,G1-6,G10,S1 and 2,85 and Ry =P, = B; =0
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TABLE 13.— LONGITUDINAL CHARACTERISTIC EQUATION IN DETERMINANT FORM

[ 2

Cm

" {CmgD+Crm)

where: R=M/PSy I M=W/g; =32

D=t* d/dt; t*=4/V,

(2p +CLD+(CL_+Cp)) -( 2u-Cp )b ||=0

*
»

CLl

igD2 - CmqD

Note: For the equivalent elastic
airplane, CLgand all i
are not accounted for.

Rigid airplane

Equivalent elastic airplane
&

All derivatives are conventional
rigid derivatives.

ip = Iyy/PSy #3

W =Actual airplane weight

Derivatives include elastic effects
due to both aerodynamic and
inertial loading (Formulation II)
and would have E subscripts.

ip=(yy = Crmis,  Sy)/pSw 3

W = Actual airplane weight

Assumptions required:

D12,5,7,8,11,G16, 10,51-2,5and Ry =@y = B =C,,, +Cpy =0
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(A W1 {x,} = {o} (166)

N [ ]
where [A(M)] is identical with [A(D)] for A = D. The solutions Aj/t*,i= 1, 2, 3, 4 of the
fourth-order polynominal equation (163) are the “‘roots of the characteristic equation.”
Since a rather complete discussion of the coefficients A through E and the occurrence and
significance of various combinations of real and complex roots may be found in refs. 4 and
36, it is not repeated here.

The systems analysis analogies used for airplane characteristic equations lead to the
conventional “mode” definitions which follow (in equation (163) let A;/t* = S and divide by
A).

First, for longitudinal equations (for two complex pairs of roots):

2 2
s2+2¢, wnpS+ wnp)(sz+z top wsps+wl2,sp)=o

where:  p ~phugoid mode
sp ~ short period mode

w
np< (.I.’nsp

therootsare  §] 3 =0y % jwy
S34 =."sp * jwgp
~$p(sp) wnp(sp) = Op(sp) is the real part of the

phugoid (short period)
root pair

npyspyV1 - Eisp) = Up(sp) 1 the imaginary part of
the phugoid (short period)
root pair

Ip(sp) is the phugoid (short period) damping ratio

wnp( sp) is the phugoid (short period) undamped
‘ natural frequency



Second, for lateral-directional equations (for one complex pair and two real roots):

2 2 | Ly*
& +2§DwnDS+@nD)(S+Tr)(S+-rs) =0

where: D ~Dutch roll mode
r ~ro’ling convergence root
s ~spital root

I 1

_—
Tr T
the rootsare  §) 2 =0p* jup
11
Sy4=-5,-=— =03, 0,
3,4 Ty T 374

- &p wppy =0p s the real part of the Dutch
roll root pair

Wap4/1- §]2)‘= Wp  is the imaginary part of the
Dutch roll root pair

& is the Dutch roll damping ratio

Wnpy is the Dutch roll undamped natural
frequency

The relationship between the damping factor (£), undamped natural frequency (wp),
damping (o) frequency, and damped frequency (w) is illustrated in the diagram below.

— e S )

LS ———
(o

*Sometimes the term (S+ %—) is written (S-%— ,
) $
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0=~
tw,

5 1/2
w=u (1-¢)

=-¢cos 6

Assume that there are two complex pairs of roots that result from the solution of the
rigid or equivalent elastic longitudinal characteristic equation. The real-time solution fora

will ther | sve the form

a=eP gin(t-P,)+e P sin{w_t-P,) (167)
P 1 sp 2

where Pjand P; are constants determined by initial conditions.
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One pair of roots, the highest frequency pair, determines the short period mode.

The damped frequency is given by

. [ 3
Wgp™ radians/second *

The period is given by

2nr

PSp=—w—S : seconds /cycle

Time to damp to half amplitude for Osp <0 is given by

1

- 1
T1 /2= o,spln (2) seconds

For Osp™ 0, time to double amplitude is given by

1
T, == In (2) ~ seconds
2=z ln

Cycles to damp to half amplitude is given by

" T _Yspliye

~ cycles
/27 Pg, 27

C

Cycles to double amplitude is given by

T, wWeal

2__Sp2
C,=5"%= ~cycles

2 Psp 27

(168)

(169)

(170)

(171)

(172)
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These parameters apply also to the longitudinal phugoid mode, the lateral-directional
Dutch roll mode and, in some cases, a lateral phugoid mode when the lateral-directional
characteristic equation yields two pairs of complex roots. .

8.3.3 Completely elastic airplane.— For the completely elastic airplane a less restricted
approach is required than that used for the rigid and equivalent elastic cases. This involves a
mathematical model that will account for the structural dynamic motions of the airplane as
well as the flight path and rotational motions. It is accomplished using a model with the
option of including or excluding residual flexibility, thus giving a system with an arbitrary
number of variables. The airplane has, then, the usual six degrees of freedom plus an
arbitrary number of degrees of freedom that involves the structural dynamics.

Subject to the type of problem to be solved and the degree of accuracy required, the
engineer has a choice as to the number of variables (degrees of freedom) to include in any
one analysis. This is a considerable departure from the philosophy of the well-defined, six
rigid-body degrees of freedom associated with the rigid and equivalent elastic mathematical
models previously discussed.

The equations of motion that represent both rigid-body and internal motion have been
developed as equation (95) in Sec. 5 and are repeated here

(a]1{d}+[BI{q}+ (Ccl{q}={o} (173)

Expressions for the coefficients [a] and [B] have been presented in Sec. 5 for a residual-
flexibility formulation and for the case where all elastic degrees of freedom participate
dynamicaily. For the latter case, i.e., a completely elastic airplane, the coefficient [a]
represents the generalized mass, [B] includes the aerodynamic damping, and [C] tl2 gener-
alized stiffness and generalized displacement dependent aerodynamic coefficients.

Taking the Laplace transformation of equation (173) yields

[ta)s? « (Bl s + [C1){a®)}={0} (174)

NOTE: From the definition of perturbation variables {q},

{at=0}={d(t=0}={o0}

which will have nontrivial solutions {q} only if

I[ia182+lB]s+(cl]|=o (175)



] %

" The characteristic equation (175) then yields a determinant with clements a ij82 + BijS
+ Cij' When equation (175) is expanded, it yields a polynominal of degree € 2n, where nis
the order of the determinant. The roots of this polynominal are the roots of the character-
istic equation (175). These roots are obtained using an eigruvalue approach. The theory is
described in refs. 37 and 38.

8.3.4 Approximate solutions.— Approximate solutions for rigid airplane frequency
and damping characteristics have long been in existence. It is assumed that the appropriate
solutions also apply to the equivalent elastic mathematical model because of its similarity to
the rigid model.

An extensive discussion of approximate characteristics, transfer functions, etc., can be
found in ref. 36. For a two-degree-of-freedom (e and 6), longitudinal short period mode
approximation, the expressions for frequency and damping are:

N 1/2
wnsp ~ [Mq Z, - vCl M w] (176)
and
- M:+Z_ +M )
: ( €, v v 19 (177)
sp 2w
. nsp
where
— o2
- ase”
My~ 27, 1 “m
19 4

" 165



156

=
<l
w
ol

9}

a4

Cl yy1 a
— a2
M\i/= qS;: Cm'
2V 1 a
C, W

Data in both refs. 4 and 36 show these to be accurate expressions for certain rigid
airplanes when compared with the exact guartic solution of equation (166) for longitudinal
equations. These expressions h~ve been considered in the light of the study airplanes and the
results summarized in table 10. Detailed results may be found in app. C.

The longitudinal phngoid mode can also be approximated by two degrees of freedom,
u and 8. Approximate frequency and damping expressions for the phugoid mode are:

= [—- Z ug/vcl]l/ 2. (178)
and
bp= -Xu/zc.anP (179)
where
2y = M-%SC (‘ r, " %%, )" Mﬁ\?C €z,
1 1
Xy = Ma‘?cl (‘ Cp, " 2%, 1\431{73(:1 s,



A set of approximate expressions for the lateral-directio'r‘xal mouds is given in ref. 36.
The Dutch roll, rolling covergence, and spiral modes are given as

. 1/2
“np~ (N'B)

(or aless compliczied expression

which, together with equation (180), gives good results in some cases)

. : 48
YvaNr*LPmVVC Lﬂ
I S 1
T, Ny

(180)

(181)

182)

(183)

(184)
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where

- Gsb
Nﬁ 1 Cn
zz; 8
T
Y, =5rv— . C"B
1
- _ qSb
BV, L C!P
1 1
-2 '
Sb
N =xJ c
-Tr 2V, 1 n
C1 zz1 T
L _2V<‘1s102 Cy
r
Cll‘xx1
qshb
L,=<3 c
B V. 1 f
C1 XX, B

The merits of using equations (180) and (182) are discussed in detail in app. C and
summarized in table 10. The complexity of equations (183) and (184) makes their use
almost ineffectual when compared with the use of the small perturbation program. These
expressions for 1/Ty and 1/Tg were not used in this study.

Similarity between the rigid and equivalent elastic mathematical models implies that
the use of the approximate expressions could also be used for equivalent elastic cases with
some minor redefinitions of terms involved.

Some studies have been made for the completely elastic airplane from the viewpoint of
approximate transfer functions. In one study (ref. 39), some approximate frequency and
damping expressions were obtained for rigid-body modes with one and two elastic modes
for three dissimilar configurations. It is apparent from the study that the form and accuracy
of approximate expressions are sensitive to configuration, number of ealastic modes being



considered, and dynamic pressure. The treatment of special problems for known significant
isolated elastic effects appears to be in the approximation category. The availability, speed,
and versatility of digital computcr techniques tends to pfbclude the use of approximate
expressions for solving general problems in elastic airplane dynamics.

8.3.5 Discussion of results of the characteristic equation methods.— The most impor-
tant conclusions arrived at from the longitudinal dynamic analyses were that the stability
characteristics are more sensitive to aecrodynamic derivative accuracy than to elastic effects
for the study airplane cases. In addition, the effects of elasticity were relatively small; this is
illustrated in fig. 19 for the 707-320B short period frequency and damping characteristics.

Figure 20 shows that the addition of dynamically participating elastic modes to the
SST configurations has much less effect on the short period frequency (2 x 2 versus 22 x 22
modes) than does the static-elastic type of correction (3 x 3, rigid versus equivalent elastic).
The effect of dynamic pressure is also illustrated in fig. 20 at M = 2.7. It appears that an
increase in q at that condition has an overall stiffening effect, as observed by comparing the
elastic increments between the comparable models. .

A particularly disiurbing quality of the data in fig. 20 is the lack of consistency in the
effects of elasticity. For example, the truncated, completely elastic data show increases,
decreases, and no changes in the frequency. In addition, the change between rigid and
equivalent elastic frequency shows increases in frequency for 42° sweep and decreases at
72° sweep. This precludes guessing or making any general statements as to the overall
effects of elasticity. This is even more evident as illustrated in fig. 21 where the undamped
natural frequency is presented for the SST. In each case shown, the effect of adding elastic
degrees of freedom (generalized coordinates) is illustrated.

In general, the frequency increased when the two lowest frequency elastic modes were
added, then decreased when the next sets of two were added out tec eight total modes. From
there on adding modes had rather unpredictable effects, except that in all cases the fre-
quency tended to approach a constant value as more modes were added beyond 12. The
apparent inconsistency is that the constant value is not always less than or more than the
rigid 2 x 2.

The study also showed that adding many elastic degrees of freedom consistently de-
creased the damping of the short period mode for the study airplanes.

The adequacy of a particular mathematical model (structural or aerodynamic) for the
longitudinal dynamics (table 10) would be an important consideration of a handling-
qualities study.
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For the study airplanes at the flight conditions anafyzed, the elastic effects on the
Dutch roli frequency are quite small. This is illustrated in fig. 22 where the undamped
natural frequency and damping are shown for two 707-320B flight conditions for various
numbers of elastic modes. The effects of residual flexibility are also shown. A static analysis
predicts the period of this mode accurately enough for stability and control purposes. The
damping of the Dutch roll mode decreases with the addition of the first few elastic modes,
but then increases very slightly as more elastic degrees of freedom are added. A static-elastic
analysis would appear to predict the damping with sufficient accuracy for this
configuration.

The various truncated, completely elastic airplane models gave good correlation with
flight test data for the 707-320B for the Dutch ro!! mode. Figure 23 shows the correlation
of the damping. Also shown are the poor results obtained from the equivalent elastic
handbook method. The method has certain deficiencies, which are discussed in apps. B and
C.

For many cases the variations in dynamic characteristics for the rigid airplane due to
the use of different methods for calculating the stability derivatives are as large as any elastic
effects (for all modes). This points to the fact that a sophisticated, completely elastic
airplane mathematical model is only as good as the basic rigid stability derivatives. (Table 10
summarizes the effects of elasticity on the dynamics for all configurations.) Therefore, a
need exists for an accurate analytical approach to generating all stability derivatives in
éonjunction with lifting surface and lifting line aerodynamic theories. The longitudinal rate
derivatives (Cm&: Cmq, CLq, etc.) and all lateral-directional stability derivatives need to be
mechanized. .

8.4 Dynamic Stability Characteristics
by Time History Solutions

8.4.1 Applicability of time history solutions.— There are today several practical cases
where nonlinearities in the equations of motion (dynamic or aerodynamic) are large enough
that they cannot be neglected. It has been common practice in such cases to base judgment
of stability behavior on time history solutions of the equations of motion. A time history is
a set of data that describes airplane motions as a function of real time, i.e., {X} = {X(t)}.

Time histories have the advantage of providing a clear physical picture of the motion of
the airplane. In addition, they have the merit of allowing a direct comparison of analytical
with experimental data.
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Time histories can be generated by integrating with respect to time the complete
airplane equations of motion or, for that matter, any of the. equations of motion shown in
Sec. 5. The integration technique may vary, but the approach is generally the same for any
type of computer. The equations must be trimmed (equilibrated) either separately from or
in conjunction with the problem to be solved, ie., the solutions {Xl} of the algebraic
steady-state equations must be obtained and used as initial conditions. The program is
started with t = 0. At some time when ty < 0, a disturbance, {AX}, is introduced and the
response, { X(t)}, calculated for ty< t<ty, where t| - t is usually a time interval sufficiently
long to establish stability behavior but not so long as to involve mass or other changes that
would significantly affect assumptions made in deriving the airplane equations of motion.

In this fashion, it is possible to determine stability behavior by observation, ie., by
judging the behavior of the variables of the resulting time history. The stability criteria
associated with time histories have been stated in Sec. 6.

An importafnt observation must be made. For nonlinear equations of motion (see app.
A), several different cases involving disturbances different in both kind and magnitude must
be run to obtain sufficient information to establish the stability behavior. The reason for
this must be found in the property of nonlinear differential equations, i.e., that their
response behavior can be a function of the initial disturbance.

For the linearized, uncoupled, small perturbation equations of motion (app. A), only
one arbitrary disturbance is required for each mode (longitudinal or lateral-directional).
Linearity implies that the response behavior is independent of the size or type of disturb-
ance in that mode. However, time history generation for the linear, small perturbation
equations is not necessarily the most efficient approach to stability analysis.

The major advantage of the time history (integration) approach is that it is in terms of
real time. The analyst has more physical feel for the problem, since he observes motions
similar to those which the airplane would experience in flight under the same conditions.
Most of the disadvantages of the time history method are not geally pertinent to the
problem of stability behavior, Instead, they are of an economic nature, involving such things
as acquisition, unkeep, and availability of hardware and facilities; and man-hour expendi-
tures in programming, data preparation, and reduction.

8.4.2 Rigid and equivalent elastic airplanes.— The time history technique for rigid and
equivalent elastic models is essentially that written for the rigid airplane. The mechanized
solution will subsequently be referred to as the “rigid-body, six-degree-of-freedom pro-
gram,” even though it is also used for equivalent elastic solutions. The equations of motion
solved by the program, as described in app. A, are the “equations of arbitrary motion.”




For this program these equations can be nonautonomous. Thrust forces and moments
may be input as explicit functions of time. In addition, aerodynamic forces and momen.s
due to controls may be explicit functions of time. The aerodynamic data may be nonlinear
and aerodynamic cross-coupling may be included, e.g., CDB CmB’ and CLB Certain negli-
gible derivatives such as Cp, and CYG A have been neglected.,

A description of the particular integration scheme used to solve the equations of
motion for this program may be found in app. C.

The rigid-body, six-degree-of-freedom program is capable of analyzing handling-
qualities problems Part of the basic program output is the veld 'ty (Up, Vp, Wp) and
acceleration (Up, Vp, Wp) at the pilot’s station. Also, because engine thrust may be input
separately for each engine as an explicit function of time, the program has the capability to
analyze engine-out-type time history solutions.

8.4.3 Completely elastic airplane.— The time history solutions of the completely
elastic airplane equations of motion for this study were obtained w.ing a special program-
ming language called MIMIC. This special technique is documented in ref. 40. The time
histories are merely the time-dependent analogs of the frequency-dependent equation (174)
with initial equilibrium conditions to which the perturbations are added along with a dis-
turbance to excite the system. The scheme is simple. From the equilibrium conditions and
the disturbance, the accelerations are calculated, ¢.2.,

/
4=, (fah e, fa})

. (185)
i=1,2,...,n
these are integrated by making the statements
4G =INT (qi, 4 <0))
(186)
=<’1i(0)+f'ciidt i=1,2,...,n

and further by

q =IN T(&i, qi(O))

) . (187)
=qi(0)+fqidt i=1,2,...,1n
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Inciuded as a subroutine in the MIMIC program is a Runge-Kutta numerical integration
technique that accomplished the integrations, equations (186) and (187). This approach is
easy for the engineer since the programs are then physically oriented. However, as one might
expect, the easier the program is to write, for a given problém, the more time is required to
execute it.

As was mentioned already, this solution is an analog of the frequency-dependent
equation (174). Indeed, aside from errors inherent in the numerical integration technique,
there should be no difference between the MIMIC solutions and those obtained from the
explicit expression

{a} =x-1([ [a]s2 + [B]S + [C ]]'1 {qo}) (188)

wharexy‘1 indicates the inverse Laplace transformation.

8.4.4 Discussion of time history solutions.— For the time histories generated for this
report, the aerodynamic coefficients were of a linear nature only. Also, the lateral-
directional and longitudinal modes were constrained to be uncoupled. The time history
methods were used here to obtain a graphic presentation of the motion in response to
various disturbances. The frequency and damping characteristics are vs.entially those given
by the characteristic equation method.

An example of the use of the MIMIC program to generate longitudinal time histories is
shown in fig. 24, The response of the 707-320B to an elevator pulse is shown for three
mathematical models. The rigid model corresponds to the truncated, completely elastic
model resulting in the use of a 2 x 2 matrix. The inclusion of 14 dynamic modes in a
static-elastic manner results in the greatest pitch amplitudes. If four modes are allowed to
participate dynamically, the result is an effective increase in the damping as reflected in the
decrease of amplitude.

Appendix C presents r <~ examples of the use of MIMIC and the six-degree-of-
freedom program to generate ..u€ histories.
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9.0 SOLUTION OF THE COMPLETE PROBLEM

[

9.1 Arrangement of a Computation System

Previous discussions have dealt with individual parts of the overall problen. of deter-
mining the stability characteristics of an elastic airplane. The pertinent methods cana now be
arranged to form a general calculation procedure. Certain preparatcry calculations and
inputs must also be included as part of the procedure.

To handle elastic airplane problems completely and in sufficient detail for most appli-
cations, computer mechanization of the methods is necessary. On this basis, a flow diagram
of recommended computer program system is given in fig. 25. This system is now under
development.

The airplane definition section computes the characteristics of an airplane in terms of
aervdynamic and structural influence coefficients, free vibration normal modes, and inertias.
This section will not accept empirical data as input. The airplane stability evaluation section
evaluates the stability characteristics of the airplane, using the results from the airplane
definition section either alor: or in conjunction with empirical data which would apply
corrections to or replace the computed results from the airplane definition section.

The airplane definition section consists of four computer programs identified as: geom-
etry definition (GD), aerodynamic influence coefficients (AIC), structural influence coeffi-
cients (SIC), and normal modes (NM). The airplane stability evaluation section consists of
three computer programs identified as: stability derivatives and static stability {(SD&SS),
characteristic equation rooting {CER), and time histories (TH). Specifications and com-
ments o1 each of the program elements are given in following sections. Element specifica-
tions were arrived at after careful consideration of the detailed results and developments
contained in the appendixes as well as of information in this document.

9,2 Use of the System

The system as presented above could be operated in a number of ways to suit the
particular needs of the user. It has the capability of accepting very detailed inputs as well as
empirical and test data to obtain very accurate answers. It can also be used in a less complex
manner to find preliminary-design-type data. The major use classifications can be stated as:

1. Preliminary design;

2. Configuration development;

3. End roduct development
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input: Description of airplane
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; slopes; panel corner point loca-
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9.2.1 Preliminary design use.— This category is one for which only relatively rough
input data are usually available. Structural characteristics :.md mass distribution are very
approximate, and no wind tunnel or other aerodynamic test data are available. Under these
circumstances, coarser airplane paneling would ordinarily be used than for configuration or
end product development. It would also be usual to concentrate on finding stability deriva-
tives and static stability characteristics from the SD&SS program. Use would not ordinarily
be made of the NM and TH parts of the system nor, possibly, of the CER program.

Therefore, by using the GD, AIC, SIC, SD&SS, and CER elements, preliminary-design-
type answers could be obtained on the elastic effects. Comparison of the computed elastic
and rigid stability derivatives and static stability would provide a good first look at the role
th-t flexibility plays for a particular configuration. It should be remembered, however, that
the specific rigid and elastic values may be in considerable error, although better than
obtainable in the past, even when the elastic-to-rigid ratios or increments are adequate.

Use of the system in this manner allows relatively easy calculat.on of effects due to
configuration changes, loading, flight regime changes, etc., for both the rigid and the elastic

airplane.

9.2.2 Configuration development use.— For this use, input data for the system are
more accurate and complete than for preliminary design. By this time, detailed structural
analyses have generally been accomplished, weights determined, and wind tunnel tests run
on the basic configuration. Usually aerodynamic force data are available, but not pressure
distribution data.

The GD element is now used to give a more accurate description of the airplane.
Denser paneling is specified. Details such as dihedral and detailed geometry are included.
The AIC program, using the better description, can now calculate more accurate aero-
dynamic data. Items such as nacelle and wing-body-tail interference, which may have been
neglected in the preliminary design studies, are now included.

In the SIC element the early matrix obtained with an approximate beam analysis is
replaced with a more exact beam analysis or with an externally developed matrix. If the
externally developed matrix is based on different paneling than the AIC’s, an interpolation
routine in the SIC program changes the matrix to be consistent with the aerodynamic
paneling.

It may be elected at this point to include the structural dynamic effect on the stability
characteristics. This is initiated by exercising the NM program to provide data for inputing
programs in the airplane evaluation section of the system.
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In the stability evaluation section, the user has the opportunity to supplement or
replace previously calculated data with .est, handbook, or empirical data. A modest amount
of adjustment is normally desirable for cases where viscou.s effects and nonlinearities are
small. The adjustment would usually take the form of applying calculated elastic-to-rigid
ratios to wind-tunnel-obtained stability derivatives. For example,

Cm
Elastic .
Cma B Ch Cma
eq.el. “Rigia | Computed Rigid |y .

Where viscous effects and/or nonlinearities are important, more extensive adjustment
should be made, -

The SD&SS program then calculates the derivatives and static stability using the
previously calculated data plus desired empirical inputs.

To obtain the dynamic stability characteristics, one chooses either the CER or TH
program. The CER program is faster but is more restricted, since it is based on the linear,
small perturbation equations. The TH program would be required for cases where large
perturbations describe the motion. It can also be used for the small perturbation case, but
would not give any more information than could be obtained from the CER program.

The structural dynamic effects can be included in either program by inputing the NM
program results. Comparisons of rigid, equivalent elastic, ~d completely elastic airplane
representations are then possible.

9.2.3 End product development.— The methods for this area of use are an extension
of those of the previous section. More and more test data would be fed into the system so
that ultimately the system might be considered as a vehicle for calculating perturbations to
the test information. In particular, pressure distribution data, local separations, complete
surface stall, viscous wake effects, and other effects would be empirically included. The
extent of this type of investigation is usually limited by the time and experience of the user.
The main value of this approach is to investigate problem areas that may come to light late
in the development of a configuration or in flight test.




9.3 System Element Descriptions
[ 3
9.3.1 Geometry definition (GD).— This program accel;ts as input the basic geometric
description of the airplane’s surface either in its cruise condition or in its unloaded condi-
tion (jig shape). In addition, the program accepts an acrodynamic paneling density selection.
Constraints placed on the paneling selection reflect, primarily, the requirements of the
aerodynamic representation. The program will have the option of letting the program select

the paneling based on a selected density or of operating with a user-selected paneling. The

number of aerodynamic panels will be open-ended.

The program will compute thickness, incidence, and dihedral slope at each panel con-
trol point and panel centroid, and body surface paneling required for wing-body-tail inter-
ference flow on a cylinder of mean body radius. It will also compute the coordinates of the
corners, centroids, and control points of the aerodynamic panels as well as their areas.

9.3.2 Aerodynamic influence coefficients (AIC).— The surface of the airplane is
divided into panels in the geometry definition (GD) program. The function of the AIC
program is to compute the change in the pressure force coefficient at each surface panel due
to a unit change in inclination to the flow at each panel. The AIC’s will include the effects
of a slender body, thin wing, and tail as well as wing-body-tail interference. The approach is
essentially that of ref. 35. The computation is Mach number dependent and will handle
subsonic and supersonic flows up to Mach 5. Transonic flow in the range of about Mach 0.9
to 1.2 is not handled rigorously, so calculations should not be made in the regime. Methods
are satisfactory for altitudes up to 30 000 meters (about 100 000 ft).

The AIC’s for changes in surface panel inclinations to the flow which are symmetric
with respect to the airplane’s plane of symmetry are computed separately from those which
are nonsymmetric. The method of ref. 35 consists of representing the perturbation of a
uniform irrotational flow (due to the presence of the airplane) by line singularities (at inner
surfaces of the wing and tail).

Body thickness, camber, and incidence are represented by line sources and line
doublets on the body axis. The wing and tail surface thickness slopes are represented by
surface distributions of sources with linearly varying strengths. The effects of wing and tail
surface incidence and camber, as well as body interference on the wing and tail surfaces, are
represented by vorticity distributions.

Unsteady aerodynamic effects can be accounted for in a manner consistent with the
requirements of airplane stability evaluation. The method suggested by Miles (ref. 28) for
reduced frequencies that are less than unity will be used to reduce the aerodynamics of
unsteady flow to one of steady flow.

=)
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An aerodynamic influence coefficient theory for nonsymmetrical flow past wing-
body-tail combinations has not previously been developed. This development is now being
carried out. The techniques involved in the development and theoretical justification are
outlined by Van Dyke (ref. 41), Ashley and Landahl (ref. 27),and Chester (ref. 29).

9.3.3 Structural influence coefficients (SIC).— This program computes the elements of
four flexibility matrices that have the following properties:

® Matrix (1) gives the displacement of each panel control point due to a unit load at
each panel centroid.

® Matrix (2) gives the displacement of each panel centroid due to a unit load at each
panel centroid.

® Matrix (3) gives the rotation about the y body axis (z body axis for vertical tail and
body) at each panel control point due to a unit load at each panel centroid.

® Matrix (4) gives the rotation about the x body axis due to a unit load at each panel
centroid.

e All comf)uted flexibility matrices are such that a self- equilibrating system of loads
applied at panel centroids does not give rise to a displacement of the airplane’s
center of gravity or a rigid-body rotation of the airplane about its center of gravity.

The program will also compute the location of the airplane’s center of gravity and the
components of its inertia in the body axis system.

The program accepts as input:
® Distribution of mass based on paneling computed in GD program.
o Distribution of bending and torsional rigidities along an elastic axis system.
® Geometric description of the elastic axis system.
or -
® Elements of a flexibility or a stiffness matrix computed exterior to this system using

an arbitrary selection of structural modes.

If elastic axis data are input to the program, the flexibility matrices are computed from
beam theory for an arbitrary number of beams. The flexibility matrices are computed by an
interpolation method if a flexibility or a stiffness matrix is input to the program. The
program is such that an arbitrary number of mass distributions may be combined using
multiplying factors.

9.3.4 Structural normal modes (NM).— This program is essentially an eigenvalue pro-
gram. The free vibration of the structure is given by the eigenvalue problem

(m] +32 [K]) {o,} =0 (189)



,) The eignevalues, wy,, are the natural frequencies. The digenvectors, {q)n}, when normal-
ized, are the free vibration normal mode shapes. They give the deflected shapes of the
airplane at the resonant natural frequencies, wy. Slope normal mode shapes can be calcu-
lated from the deflection shapes. These results are combined into three mode shape
matrices. One relates elastic deflections at the panel control points to generalized coordi-
nates (elastic degrees of ireedom), another relates angle-of-incidence changes at the panel
control point to elastic degrees of freedom, and the final one relates dihedral changes at the
panel control points to elastic degrees of freedom.

9.3.5 Stability derivative and static stability (SD&SS).— This program accepts the
following as input from the airplane definition section: paneling geometry, normal mode
shapes, reference flight condition attitude (8¢, # ), M h number, dynamic pressure and
load factor, flexibility matrices, aerodynamic influence cyefficients, mass distribution, and
control surface deflection angles. It will compute all significant stability derivatives based on
aerodynamic influence coefficients; as well as control surface trum angles for the reference
flight condition, airplane shape in reference flight condition, stick-speed stability, elevator
angles per g, neutral point, and maneuver point.

The matrix equations for the stability derivatives formulated for residual flexibility are
fundamental to this program. These were presented and discussed in Sec. 7. Recall that the
matrices [A1], [A2], [A3], [A4], and [Ag] appearing in the equations of motion intro-
duced the aerodynamic forces. These matrices, when premultiplied by the matrices [5]T
[B 1]'1 or [¢1]T [Bll‘l, result in the airplane stability derivatives for the residual-
flexibility formulation. If the ma:rix K4 in the equation of motion is replaced by a
matrix whose elements are all zero, the stability derivatives reduce to the equivalent elastic
stability derivatives. These are derived in app. B from the flow boundary condition at the
airplane’s surface. If, in addition, the flexibility matrix [E] is set equal to a zero matirix,
then the stability derivatives are the rigid airplane stability derivatives. Thus, the stability
derivatives in the form contained in equation (47) are the most general that may be chosen,
since rigid and equivalent elastic derivatives may be readily obtained from them.

Inclusion of a corrector matrix technique in the SD&SS program based on the analysis
presented in app. B is recommended. That technique utilizes a diagonal corrector matrix
that corrects the aerodynamic influence coefficient matrix using wind tunnel pressure model
data. A correction is made at each test condition, e.g., angles of incidence (@,8) and Mach
number. The SD&SS program will accept pressure model data as input. The pressure data
cannot be constrained to correspond to the aerodynamic panel centroic <lection as they are
in the GD program. Therefore, the user is required to select those aerodynamic panel
centroids which are to be corrected by each pressure data point. The SD&SS program
partitions the aerodynamic influence coefficient matrix in accordance with the user’s

1
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selection and performs the corrections on the basis of the partitioned matrix. The program
will compute the stability derivatives and static stability results for each test condition for
which pressure data is input. The results are then tabulateq in a form acceptable as input to
the TH program.

The program will also accept as input stability derivative data obtained from wind
tunnel and flight testing in tabular form. At the selection of the user, th's data would be
used in combination with corrected or uncorrected aerodynamic and structural influence
coefficients to obtain stability derivatives that are corrected for elastic effects.

The corrections that can be computed are as follows:
LE/LR = ratio of lift, elastic to rigid
DE/DR = ratio of drag, elastic to rigid
YE/YR = ratio of side force, elastic to rigid
ME/MR = ratic of pitching moment, elastic to rigid
RE/ RR = ratio of rolling moment, elastic to rigid
NE/NR = ratio of yawing moment, elastic to rigid
Aac = change in aerodynamic center, elastic from rigid

The program will be such that these elastic-to-rigid corrections can be computea for
complete configurations to correct rigid stability derivatives and control derivatives obtained
exterior to the program. The program can also compute the elastic-to-rigid corrections for
contributions due to the components of a complete configuration, i.e., wing, body, and tail.

9.3.6 Characteristic Equation Rooting (CER).— This program operates only on the
basis of the small perturbation equations of motion. The stability derivatives will, therefore,
be constants and the equations of motion will be linear, ordinéry differential equations with
constant coefficients.

The program will accept as input the coefficients of the motion variables appearing in
the equations of motion. It will combine the coefficients in the appropriate form for the
rooting method. The method should be programmed in open-ended form so as to accept as
many degrees of freedom as desired.

The program computes:

® times and number of cycles to damp to half and to one-tenth amplitude,
o frequency and period of modes,

e undamped natural frequency of modes,

o damping ratios of modes,

® phase and amplitude of model coupling terms, e.g., argument, and

® (¢/B) and magnitude (¢/3).



9.3.7 Time Histories (TH).— This program integrates the large perturbation equations
of motion of the airplane by a variable, step-size Runge-Kutta method. The computed
motion variables are as follows: .

» . . 2 2 1/2 [ [4 [
u, V, w, u, v, w, Vc=(u +v +W) ? p: q’ r, P» q’ r,e, lp’ ¢, nz andh

The program will be such that the stability derivatives are input as constants or as
variables. When the stability derivatives are variables, their values as functions of the motion
variables wiil be input from tables and interpolated or extrapolated linearly. The interpola-
tion method can handle three independent variables; where more than three are required,
superposition will be used to obtain the value of the stability derivative.

The forces.and moments from engine thrust will include the effect of engine location
and attitude. Inertial effects from rotating engine parts can also be included.

.The mass and components of inertia are constant. The airplane will be considered to be
flying over a flat, nonrotating earth.
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10. CONCLUS!ONS AND RECOMMENDATIONS
%

The conclusions and recommendations listed below have been formulated following an

examination of the results of work reported both in this decument and in the appendixes.

1. In general, reliable pr:dictions of elastic airplane longitudinal stability and control
characteristics can be made using current state-of-the-art theoretical methods. These
methods are applicable and practical for preliminary design purposes.

2. The generai equations of motion, along with either the large perturbatioh or smalil
perturbation equations of motion, were found to be suitable for determining refer-
ence motion and stability characteristics of an airplane when it is disturbed from the
reference motion. The small perturbation equations are applicable to nearly linear
systems. The large perturbation equations are necessary in examining nonlinear
systems and large disturbances from the reference motion.

3. The mathematical formulation of stability criter. is the same for rigid, equivalent
elastic, and completely elastic airplanes.

4. Static stability is usually, but not always, a prerequisite for dynamic stability and
good handling qualities.

S. Energy decay methods and Lyapunov stability theory have potential stability cri-
teria application. However, more research is needed to establish their practical
application.

6. Handbook methods in some cases give low-quality results for estimation of rigid air-
plane stability derivatives. In addition, taken alone they cannot adequately predict
elastic effects.

7. The aerodynamic influence coefficient method using lifting surface theory gives
generally acceptable results for estimation of rigid and equivalent elastic longitudinal
derivatives. The method is applicable to lateral-directional problems but has not
been mechanized as yet; this should be done.

This method, when arranged for accepting some empirical and test data, was
judged to be the best available approach for predicting airplane stability derivatives.
Incorporation of leading edge suction, more accurate shed vortex field representa-
tion, and other improvements are possible and should be developed where greater
accuracy is desired than would be obtained with the basic method.

8. If wind tunnel data are available, the method of (7) above can be used to provide
more accurate predictions of equivalent elastic effects. This is done by computing an
elastic-to-rigid ratio or increment, which is then applied to the wind tunnel value.

For example,
Cma
C - Elastic ‘o
m,, Cp m,
Eq.El. aRigi d |computed Rigid W,
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ualis appreach is recommended as a practical and reasonably accurate way to obtain
equivalent elastic effects.

.9. The remarks in (6), (7), and (8) above also apply %o prediction of airplane static
stability.

10. Both static and dynamic stability characteristics were found to be sensitive to
inaccuracies in estimating the rigid stability derivatives, This uncertainty is usually as
large as the elastic effects.

11. Dynamic flexibility effects were usually found to be modest and smaller than the
equivalent elastic effects. About 20 elastic modes are required to obtain good re-
sults; using less than this number can lead to significant error if residual flexibility is

_notused. '

12. For many cases the equivalent elastic formulation represents the airplane accurately
enough so that there is no need to go to the extra complication of the completely
elastic formulation. Engineering judgment is required to decide on this for dynamic
stability evaluation of any particular configuration, however.

13. Approximate formulas for determining damping of longitudinal dynamics were satis-

factory provided Cma is dominant. However, these methods are unreliable for gen-
eral use and should be avoided.

- 14, Characteristic equation rooting and “time history methods are adequate and are

recommende for use in dewermining both longitudinal and lateral-directional
dynamic stability characteristics.
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